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We study analyticallyM-spin-flip stable states in disordered short-ranged Ising mddeis glasses and
ferromagnetsin all dimensions and for alM. Our approach is primarily dynamical, and is based on the
convergence of!, a zero-temperature dynamical process with flips of lattice animals up t&/sired starting
from a deep quench, to a metastable limit. The results(rigorous and nonrigorous, in infinite and finite
volumeg concern many aspects of metastable states: their numbers, basins of attraction, energy densities,
overlaps, remanent magnetizations, and relations to thermodynamic states. For example, we show that their
overlap distribution is & function at zero. We also define a dynamics b= o, which provides a potential
tool for investigating ground state structuf81063-651X99)07111-1

PACS numbse(s): 05.50-+q, 75.10.Nr, 75.50.Lk, 64.60.My

[. INTRODUCTION stability in spin glass dynamics remains relatively primitive.
Because this understanding cannot be obtained through
_ . _ conventional statistical mechanical tools, few analytical re-
Studies of spin glass dynamics often start from the assyits are available, and are usually confined to the case of
sumption that their anomalous, and still poorly understoodgne-spin-flip (energetically stable states. In early work,
features arise from the presence of a large number of “metafanaka and Edwardi28], Bray and Moore[29], and De
stable” (i.e., locally stablgstates within the spin glass phase pominicis etal. [30] studied their number in the
(many reviews are available; see, for example, Réfs3]). Sherrington-Kirkpatrick (SK) [31] (or equivalently, the
Although there exists plentifuthough mostly indiregtevi-  Thouless-Anderson-PalmefTAP) [32]) mean field spin
dence for the presence of many metastable states in spglass. They found that the number of one-spin-flip stable
glasses, little hard knowledge of their properties has beestates in a system oN spins scaled as exp(0.1992
obtained. Most treatments of spin glass dynamics must therdNemoto[33] studied the same set of metastable states, and
fore rely on assumptions—that often differ widely—about asserted both that their energy levels behaved as in a random
their number, nature, and structdire-16]. Questions regard- energy model, and that the barrier energy between them is an
ing metastability(and the accompanying “broken ergodic- increasing function of their Hamming distance. Vertechi and
ity” [17]) are also important in the study of other disorderedVirasoro[34], in both analytical and numerical work, and
systems, such as glasq4ds,19, and of certain neural net- confining their analysis to the lowest energyetastable
work models[20-22. Any information on spin glass meta- states, found results consistent with the hypothesis that the
stable states, obtained from first principles and without asenergy barriers between metastable states scale with their
sumptions, would therefore be highly usefiiThe reader Hamming distance; they suggested that this correspondence
who wishes to cut to the chase is referred to Secs. | B 1 anthight explain the mean field ultrametric organization of
| B 2 below, where our results, providing such information, states. Other work has also been done on the distribution of
are summarizedl. barriers in the SK modgB5], as well as on metastable states
Numerical simulations have provided much of the evi-in other mean-field models, including the infinite-ranged
dence for the existence of metastability in spin glasses; inp-spin-interaction spin glag86], the sphericap-spin model
deed, the presence of metastability has often been an impedB7], the infinite-ranged Potts glag38], and related systems
ment to studies of equilibrium properti€23,24, and has in  such as Kauffman'&-k model[39].
turn led to new numerical techniques such as simulated an- There exist few theoretical results on metastable states in
nealing [25,26. Experiments are frequently interpreted short-ranged disordered systems in two or more dimensions,
through the use of metastable states, and are used to try &ven though results on these would be important in interpret-
extract information about them; early examples include adng laboratory experiments. Rare analytical results have been
susceptibility, time-dependent magnetization, spin echo, thebtained on a one-dimensional spin chain with a continuous
Mossbauer effect, and othe8]. More recent experiments coupling distribution symmetric about zef40—42. It was
that may provide information on metastable states includéound that the number of one-spin-flip stable states increases
measurements of noise in mesoscopic spin glaj@dsand  exponentially with the system siZin Ref.[40], metastable
aging[4—16]. However, because assumptions about the numstates of greater than single spin stability were also exam-
ber and structure of metastable states must invariably bmed). Derrida and Gardnel42] further showed that there
made, our general understanding of the role played by metaxisted a maximum magnetization above which there existed

A. Overview
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no metastable states. Bray and Mop48] presented a rep- should be related to a description based upon the pure state
lica formalism for studying one-spin-flip stable states instructure. We will not discuss such a relation further in this
finite-dimensional spin glasses; using this formalism, theypaper, and will treat metastable states independently from
carried out a stability analysis about mean field theory, andhese considerations. If the above caveat is kept in mind,
studied some of the properties of metastable states witihen the study of metastable states can provide a ugeftl
higher energies. More recently, numerical studi§ of the ~ Nnot orthogonal complement to real-space approaches based
two-dimensionat-J spin glass seem to indicate that as sys-On thermodynamic pure state structure.

tem size increases, the energy densities of time-spin-flip

metastable states converge to a single value. B. Summary of results

Summarizing, it appears that until now it has been diffi-  Although most of our results will apply to many types of
cult to obtain hard analytical results on metastable states iflisordered systems, for specificity we consider the Ising spin

short-ranged spin glasses in dimensions greater than ongamiltonian on thed-dimensional infinite cubic lattic&¢,
Aside from demonstrating that such states almost certainly

exist in spin glasses and are important in determining their
physics, neither experimental nor numerical work to date can H= _<X2y> Jxyox 0y @
provide unambiguous and detailed information on their
structure. Both analytical and numerical analyses that di-
rectly address the properties of metastable sta@g®pposed Here the sitex are inZ? the spinso,= =1, and the sum is
to inferring their properties indirectljhave mostly been con- over nearest neighbors. The couplirigg will be taken to be
fined either to mean-field or one-dimensional models, andndependent, identically distributed random variables
are usually limited to the study of one-spin-flip energetically (though occasionally we will examine other casese re-
stable states. quire of their common distribution that it be continuous and
In this paper we provide rigorous results on metastabldave finite mear(and, for some of our results, further re-
states that rely on no approximations or assumptions. Weguirements We denote by7 a particular realization of all
will analyze the properties of metastable states in disorderethe couplings.
spin systemgin particular, spin glasses and random ferro- Both the spin glass and ferromagnetic cases will be con-
magnets, both with continuous coupling distributipitsall ~ sidered. In the first case, the couplings can take on either
finite dimensions, and we will study states that are energetipositive or negative values, typicallfout not necessarily
cally stable[45] up to a flip of anyM spins, whereM <o symmetrically distributed about zero; this is the Edwards-
can be arbitrarily large. Both infinite volume and finite vol- Anderson Ising spin glass modéi2]. In the second case, the
ume systems will be addressed. couplings take on only positive values. A Gaussian distribu-
Before proceeding, we wish to add one cautionary notetion of couplings with zero mean is most commonly used in
Although we believe that the concept of metastable states e spin glass case, while a uniform distribution of couplings
both interesting and useful in understanding spin glassl  in the interval[0,J] typifies the random ferromagnet. While
othen dynamics, we believe also that alternatiffmut not  our results are not restricted to these distributions, we will
necessarily orthogonaformulations exist that have the po- use them often throughout the paper for clarity.
tential to provide this understanding without direct invoca- A one-spin-flip stable state is defined as an infinite-
tion of such states. These are fully real-space pictures, suarolume spin configuration whose energy as given by (EX.
as droplet-scaling46—-48, but possibly also others, that in- cannot be lowered by the flip of any single spin. Similarly,
terpret nonequilibrium spin glass dynamics following aanM-spin-flip stable stateN] <o) is an infinite-volume spin
guench through the resulting domain structi#®,50. Such  configuration whose energy cannot be lowered by the flip of
approaches have several advantages, in our opinion, ovany subset of 1,2 .. ,M spins. Finally, a ground state is an
those invoking metastable stat@sspecially over those that infinite-volume spin configuration whose energy cannot be
make no contact with real-space strucjuférst, they require  lowered by the flip ofany finite subset of spins.
fewer assumptiongmost of which, however, remain neither  All of the above definitions can be extended in a natural
verified nor disproved and those assumptions are typically way to finite-volume metastable states with specified bound-
more accessible to numerical or analytical tests than thosary condition. For finite-volume ground states, however, we
regarding metastable states. Second, the idea that the samphn use the alternativiend more naturaldefinition that it is
breaks up into domains, of whatever ultimate nature, follow-the spin configuratioffor spin configuration pair, in the case
ing a deep quench is appealing and likely correct. of spin-flip-symmetric boundary conditions, such as free or
While the distinction between the thermodynamic pureperiodig that has the lowest energy given the specified
states and metastable states of a system remains importahgundary condition. It is easily seen both that the definition
the overwhelming focus on metastable stdtigorced from  given in the preceding paragraph is equivalent to this in finite
real-space considerationbas led in part to the common volumes, and that the second definition has no natural exten-
viewpoint that pure state structure is irrelevant to dynamicssion to infinite volumes.
because the system is believed to spend all its time in a It has occasionally been noted that a definition of the en-
single pure state. We have shown elsewh&ig that this is  ergy (or free energybarrier confining a metastable state re-
in generalnot correct, particularly for nonequilibrium dy- mains ambiguous at least until a specific dynamics is de-
namics following a deep quench. The pure states are indedihed. We note here that this problem does not exist for the
relevant to dynamics, and at some level metastability andefinition of (energetically metastable states themselves,
metastable stateat both zero and positive temperature which can be defined solely through the use of a Hamiltonian
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such as Eq(1). Nevertheless, the essential approach of this 2. Main results
paper will be to study the metastable states by using dynam-

! : In this subsection we present “short” answers to the
ics to obtain a natural ensemble of these states.

above questions, without discussion or elaboration. A fuller

discussion, without which these answers should be regarded

1. Questions as sketchy and incomplete, will be provided in later sections.
The numbers refer to the corresponding questions from

%gc. I B 1. The section of the paper in which the claim made

low is proved and/or discussed is also given.

(1) In an infinite system, the Hamiltonian equatioh)

isplaysuncountablymany M-spin-flip stable states, for all

ite M=1 and for all finited=1 (Sec. V).

(2) For almost every/, ¢° and dynamics realization

Given these definitions, we can now ask for information
about the metastable states of disordered systems such
spin glasses. We will not attempt to be precise here, anBe
some conceptge.g., basin of attractignremain to be de-
fined. This section and Sec. | B 2 are intended only to servf
as an overview of our main results, and as a reference poi &

when reading later sections of the paper. The most baSi(Cto be defined in Sec. (53], a final stater”, depending on

guestions about metastability include the following. . : , )
(1) At the most basic level, can the existence of meta_the particular dynamics, exists. Put another way, every spin
flips only finitely many timeg(Sec. lll). (This result is not

stable states be proved? If yes, how many one-spin-flip, two byi dindeed i h f h h
spin-flip, ... metastable states existdrdimensions? Does obvious and indeed Is not the case Tor other systems, such as

the number oM-spin-flip stable states vary witkl or d? If homogeneous ferromagnets @ft—at Iea;t fqr lowd, see,
this number is infinite for som®! and/ord, is it a countable e.g.,_Refs[51,54355.) "? the usugl one-spin-flip Qlauber dy-
or uncountable infinity? namics in one dimension, precisely half the spingrihare

. O .
(2) Given an initial spin configuration® (following a completely determined by”, with the other half completely

. 0 . . .
deep quenchand a specified zero-temperature dynamicsundetermlned by~. For higherd and the same dynamics, it

(such as ordinary Glauber dynamjicsloesa®, at time t, can be shown that a dynamical order paramegger measur-

! ' . ing the percentage dependenceodt on ¢°, is strictly be-
evolve .toward a single final metastable Sta{fé.('.'e". do the tween 0 and 1Sec. VI A). (All results hold for almost every
dynamics converg® If so, how much of the initial informa-

0
. : ) . : ! L . Lo, andw.)

tion contained in the starting spin configuration is containe (3) The basins of attraction of the individual metastable
in the final state, and how much varies with the particularg

tates are of negligible size. That is, almost every initial con-

realization of the dynamicgature vs nurtune figurationo® is on a boundary betwegiwo or moré meta-
(3) How large are the basins of attraction of the meta-giaple stategSec. VII). Equivalently, the union of the do-
stable states? mains of attraction oéll of the metastable states forms a set
(4) What is the distribution of energy densities of the of measure zergin the space of alb®'s). (A similar result
metastable states? for pure states was proved in RgE1].)

(5) What is the metastable state structure in configuration (4) For anyk, almost evenk-spin-flip stable state has the
space? For example, does there exist any nontrivial overlagame energy densityg,. Moreover, the dynamics can be
distribution, in finite or infinite volume? Is there any scaling chosen so thaE;>E,>E3>--- , and furthermoreg, for
of the barrier heightdefined in some suitable or reasonableany finite k is larger than the ground state energy density,
way) between one- or higher-spin-flip stable states with theiwhich of course is the limit oE, ask—x (Sec. V.

Hamming distance, as has sometimes been claimed? (5) Almost every pair of metastable statésither two

(6) Does the number and structure of the various types ok-spin-flip stable states or orle and onek’-spin-flip stable
metastable states differ for those that arise dynamically fronstate has zero spin overlap. This conclusion does not change
two independent starting configurations, as opposed to thosghen one restricts attention to afyositive measupesubset
that evolve from the same initial configuratiofiPhis is  of metastable statgSec. I\).
somewhat different from the questions asked2y though (6) For two metastable states arising from two indepen-
not orthogonal. dently chosen starting configurationd and ¢'°, the an-

(7) What does(1) imply about how the number of meta- swers given above hold. For almost any pair of metastable
stable states scales with volume in finite samples? Do thetates arising from theamecs®, the answers irfl), (3), and
answers tq2)—(6) change for(large finite volumes? (4) still hold, but the answer t@5) is modified: it remains

(8) What is the remanent magnetizationdsdimensional true that almost every pair has tlsameoverlap, but the
spin glasses when the initial spin configuration is uniformlyoverlap is now positive, and equal to the quantity (Sec.
+17? VII).

(9) Is there any correspondence between pure and meta- (7) The number of metastable states in finite samples
stable states? More precisely, is the spin configuration correscalegfor sufficiently large volumesexponentially with the
sponding to a typical metastable state in the domain of atvolume in generad for states of any stability. It is already
traction of a single pure statéat positive temperature, known that the number of one-spin-flip stable states in a
assuming multiple pure stadesr ground stateéat zero tem- one-dimensional chain of lengthincreases as'? [40,47.
peraturg? Exact results can be obtained in higher dimensions for some

(10) Do the answers to these questions about metastabtether models. In(large finite volumes, the answers 1@)
states provide any interesting thermodynamic informationand(4)—(6) still hold (but there will be some smearing of the
such as the structure of ground states at zero temperature 8rfunctions due to finite-volume effegtd=or (3), the size of
pure states at positive temperature? the basins of attraction of the metastable states falls to zero
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as volume increasg$ec. 1X). There we also present a cautionary discussion about how to
(8) The remanent magnetization in one dimension isinterpret and use these and related conclusions.

known to be 1/356]. In higher dimensions, a heuristic cal-  We then present, in Sec. VI, a calculation of the “rema-

culation suggests a lower bound on the remanent magnetizent overlap”(and for spin glasses, remanent magnetization,

tion that for larged behaves likee 24""@ (for a Gaussian Which is a special cagdor highly disordered models, and

spin glass Exact results can be obtained in dlfor some ~ @lso provide anonrigoroug lower bound of this quantity for
other models. to be discussed in Sec. VI. ordinary disordered models in general dimensions. In the

(9) At zero temperature, almost no metastable state shoul§2Me Section we also compute the dynamical order parameter
be “contained” within a single ground state. If more than dp for ordinary disordered models in one dimension and
one pure state exists at some positive temperature, then amghly disordered models in general dimensions. In Sec. VII,

most no metastable state should be contained within a singfﬂe show that the basins of attraction of almost every meta-

pure state. That is, almost every metastable state should gtable state have measure zero, and remark that no meta-

on a “boundary” in confiquration space between multiole Fable stategas always, aside from a set of measure yero
y g P P should themselves lie completely in the basin of attraction of
pure or ground stateSec. VII).

. any ground(or at positive temperature, purstate. In Sec.
(10 I.nfor.matlon on meta§ta_blle states so far does not S€e|1 we show that the spin overlap distribution for two meta-
to provide information on infinite-volume pure or ground

. . . stable states dynamically evolved from teame(randomn)
i;[v?)t-edsihz;gtiéia\;gzeDv)w!iZi? dtehraet doPeerr((:)?:agii/:/vﬁesrléu?;m starting _conflguratlon igp, almost surely. I_n_Sec. IX we
exists an uncountable number Gffinite-volume M-spin- re-examine many of the above resu_lts for_flnllte—volume dis-
flip stable states foM arbitrarily large, but in which there or de_red systems, and show that their quaht_a tive features per-

. i . ' sist in large finite volumes, and that quantitative agreement
exists only a single pair of pure states at low temperatur

e L Svith the infinite-volume results is increasingly better as the
metastable states could conceivably 16ad to cffculdes in /0T INCTeases. n Sec. X, we present a dynarmics that
y enerates infinite-volumgroundstates, and discuss their re-

terpreting numerical studies of equilibrium properties, suc ation with metastable states. Finally, in Sec. XI, we present
as the number of purér ground states. our conclusions

The claims made i1)—(6) will be proven rigorously. For
(7), the claim of exponential scaling of the number of states
will be proven rigorously; the claim concerning overlaps in Il. DYNAMICS
finite volumes will be proven rigorously whei =1 for a ) ) ]
class of disordered systems thermodynamically equivalent to Theoretical studies of metastable states usually look di-
ordinary spin glasses and random ferromagnets. This resulgctly for one-spin-flip stable configurations for the Hamil-
should hold also foM >1 and for ordinary spin glasses and tonian(as in, e.g., Refd40-42) or for one-spin-flip stable
presented. The claims @8) include rigorous exact results (@s in, e.g., Refl29]). Here we propose insteaddgnamical
for certain models and heuristic lower bounds for other dis@PProach, in which the time evolution of the system is ex-
ordered systems. The claims @) are motivated by3), but pI0|teq as atheort_etlcal tool in determining the answers to the
have not yet been formulated in a rigorous way. The claim ofluestions posed in Sec. | B. We start by describing the dy-

(10) is based on a conjecture that is widely believed but thapamics that will be used.
remains to be proven rigorously. We begin by considering the standard zero-temperature

Glauber single-spin-flip dynamics. In every dynamical pro-
_ cess considered in this paper, the coupling realizatiois
3. Outline of rest of paper taken to be fixed. We denote hy° the initial (time zerd
In Sec. I, we present the dynamical processes to be corirfinite-volume spin configuration o&%. The starting state
sidered. The single-spin dynamics is simply the zero-o® is chosen from the(infinite-temperature ensemble in
temperature limit of the usual Glauber dynamics, but we alsavhich each spin is equally likely to bé 1 or —1, indepen-
present a multi-spin-flip dynamics. Section Il presents argudently of the others. The spin configuration is updated asyn-
ments showing convergence of the dynamics to final states iohronously, in that a single spin at a time is chosen at ran-
several contexts: both finite- and infinite-volume ordinarydom, and then always flips if the resulting configuration has
spin glasses and random ferromagnétsreafter referred to lower energy and never flips if the resulting configuration
simply as ordinary disordered modgis any dimension, for has higher energyBecause the coupling distribution is con-
strongly and highly disordered models, and finally for certaintinuous, there is no possibility of a flip costing zero energy.
types of homogeneous systems. In Sec. IV, we prove that the models where zero-energy flips can occur, as in uniform
number ofM-spin-flip stable states is uncountably infinite for ferromagnet451,54,53 or +J spin glasse$57], the stan-
ordinary disordered models, in any dimension and forny dard rule is that the chosen spin then flips with probability
and that the spin overlap distribution isSgunction at zero. 1/2)
There we also discuss implications for arguments that barri- The notion of choosing a spin “at random” needs clari-
ers between metastable states scale with their Hamming dification for an infinite-volume system. More precisely, the
tance. In Sec. V we show that the energy densities of al{continuous timgdynamics is given by independemate 1
M-spin-flip stable stategexcept for a set of measure zgro Poisson processes at eacborresponding to those timesit
are the same, and show that a natural choice of dynamioshich the spin atx looks at its neighbors and determines
leads to lower energy densities for states of higher stabilitywhether to flip. We denote by, a given realization of this
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zero-temperature single-spin flip dynamics; so a given realgive a reasonable dynamics, but our purpose here is only to

ization w; would then consist of a collection of random point out that such dynamics do exist.

timest,; (xeZ%i=1,2,...) ateveryx when spin flips for We emphasize that we are not proposing this multi-spin-

the spino, are considered. flip dynamics in order to model dynamical processes in ac-
Given Hamiltonian(1) and a specific7, ¢°, andw,, a  tual spin glasse&lthough it could conceivably be useful for

system will evolve toward a single well-defined spin con-that purposg Its intended use is rather as a theoretical tool to
figurationa! at timet. It is important to note that these three N€lp elucidate the structure of metastable states. We now

realizations(coupling, initial spin, and dynamitgre chosen Proceed to show how this may be done.

independently of one another. The continuous coupling dis-

tribution and zero-temperature dynamics together guarantee Ill. CONVERGENCE OF THE DYNAMICS

that the energy per spii(t) is always a monotonically de- |, this section, we study the question of convergence of

creasing function of time. _ _ o' to a final(metastablestates”. As always, we consider a
The above dynamps is commonly usgd in a variety ofjisordered Ising spin system with energy given by B4,

problems. We now introduce a dynamics that employsyhose coupling realizatioff is fixed throughout the dynami-

multiple-spin flips. Consider a dynamics in which rigid flips cal process. Unless otherwise specifiglwill be chosen

of all lattice animaldi.e., finite connected subsets@%, not  from a continuous coupling distribution with finite meéut

necessarily containing the origirup to sizeM spins can  other distributions will also be briefly discussed@he initial

occur. One could restrict flips to only simply connected lat-spin configuration o® is chosen from the (infinite-

tice animals(i.e., no holeg but we will not do so. The case temperaturgdistribution described at the beginning of Sec.

M =1 is the single-spin flip case just describé&di=2 cor- Il. Strictly speaking, the dynamical process corresponds to

responds to the case where both single-spin flips and rigithat following an instantaneous quench from infinite to zero

flips of all nearest-neighbor pairs of spins are allowed; andemperature. Physically, such a process is often used to

the case of generdll corresponds to flips of one-spin, two- model the behavior of systems following a deep quench from

spin, three-spin,. . . ,M-spin connected clusters. A specific high to low temperature.

realization of thisM-spin-flip dynamics will be denoted,, . We will consider the system’s evolution to a final state in
The probability measur®y, from which a dynamical re- both the finite- and infinite-volume cases. The question of

alization w, is taken must be chosen so that the resultingconvergence is not so obvious in the infinite-volume case,

dynamics is sensible, i.e., so that the dynamics leads to But is rather easy in the finite-volume case, so we will begin

single, well-defineds! for almost every7, ¢°, and wy, . there.
Furthermore, we wish the dynamics to remain sensible even
in the limit M —co. An initial requirement orP,, is that the A. Finite volumes

probability that any fixed spin considers a flip in a unit time
interval remains of order 1, uniformly iM. Such a choice
would guarantee, for example, that the probabilitPip that

a spin considers a flip in a time intervAk vanishes aga\t
—0, uniformly inM. A further requirement for the dynamics
to be well-defined is that information not propagate arbi-
trarily fast throughout the lattice agl becomes arbitrarily
large.

We will denote byA, CZ9 the LY cube centered at the
origin, and by|A | the number of sites ik, . Given some
specified boundary conditiofperiodic, fixed, free, ett.on
dA |, the boundary of\| , there is a uniquéwith respect to
spin configurations, modulo a global spin flip if the boundary
condition is spin symmetrjcminimum E&). over all spin
configurations of the energy withift, . The uniqueness, for

We therefore construct our dynamics as follows; for a"T‘OSt eve_ry7, s a consequence of the coupling dist_ribution
M fixed assigns all simply connected lattice animals of &ize P€INg continuous. S|m|larly(,L)for almost eveggthere will be
(i.e., containingk sping a dynamics chosen from a Poisson & Minimum energy changk,>0 over all possible flipgof
process as in the single-spin-flip case, but with Rge-0  lattice animals St”Ct'Z% contained im_ up to size M
depending ork, for k=1,2, ... M. We take, as before&, <|A.]) in all of Ehe : tI spin configurations im . The_
—1, and in general will require th&, . ;<R for all k. As  actual value ofA{i), will depend onJ, the boundary condi-
always, the dynamical process governing the flipping of anyion, and the choice of dynamics, i.e., the valudvbin P .
lattice animal is independent of that for all others. The energyE(")(0) at time 0 is finite, so the total number of

It is not hard to show that for any spin to flip at a rate of spin flips is bounded from above bf{)(0)—E /AR . 1t
order 1, independent ofl in the multi-spin-flip dynamics, it follows that the spin configuration converges, after a finite
is enough to require that,_,hR.<w, whereh, is the number of spin flips in finite time, to some Iimitinga)
number of lattice animals of sizle that contain the origin. (depending ortr?L) and wy;). We now turn to the more in-
This number scales exponentially kn with the constant in  teresting case of dynamical convergence to a limiting spin
the exponentialgenerally not known for most) dependent configuration in infinite volumes.
on the lattice type and dimensionalif$8]. We therefore
define our dynamics so th&,~exd —a(d)k], wherea(d) B. Infinite volumes
>0 depends only on dimension. In order that information
not propagate infinitely fast even aftét —o~, we choose
a(d) large enough so thatR, still decays exponentially Given Hamiltonian(1) and a continuous coupling distri-
fast ask— (see also theorem 3.9 in Chapter | of R&0]).  bution with finite mean, it was proved in Rdb5] for M
There might exist slower falloffs d®, with k that would also =1 that every spin flips only finitely many times for almost

1. “Ordinary” spin glasses and random ferromagnets
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every.J, o, andw;. This was implied by a more general ~We say that the spin & can influence the spin at

result that even if the coupling distribution is not continuous(where [[x—y||=1) if changing o, can alter whether the

(in almost every realizationthere can be only finitely many energy change resulting from a flip »fs less thar{or equal
energy-decreasing flip@s opposed to zero-energy flipsf  to, or greater thanzero in some spin configuration. So, for
any spin. Given both the dynamics and the continuity of theexample, if the couplingl,,=0 thany cannot influence,
coupling distribution, every spin flip strictly decreases theand vice versa(This possibility, and also that of zero energy
energy, and the implication follows. We now sketch thechanges, is excluded here, however, because we assume that
proof given in Ref[55], modified very slightly to incorpo-  the coupling distribution is continuogsf J,,#0, then the

rate the more generaVl-spin-flip dynamics; we refer the (necessary and sufficientondition thaty can influencex is
reader to Ref[55] for technical details. [60]

We denote byo) the value of the spin ax for fixed
J, o° andw,, . Define

R I YR A W 3
z||x—z||=1z#y
E(t)=—(1/2 Jy x0T, 2
(== )y:l\x—Eyllzl Iy @ for some choice of ther,’s (in {—1,+1}). Because condi-

tion (3) cares only about the coupling magnitudes and not the
signs, the discussion applies equally well to spin glasses and
random ferromagnets.

We now consider the graph consisting of all sitesZfh

t only those bondéx,y} such that eithek can influencey

or y can influencex or both. The properties of this graph
(called theinfluence graphin Ref. [60]) that are valid for
almost all 7 will depend on bothd and the coupling distri-

where the overbar indicates an average ovéof, w,,) and

|[x—y|| denotes Euclidean distance. By translation-
ergodicity of the distributions from whicty, ¢°, and wy

are chosen, and using the assumption that the distribution %fu
J has finite mean, it follows th&(t) exists, is independent
of x, and equals the energy densitye., the spatial average
energy per siteat timet in almost every realization of

J, o’ ando. bution. If there is no percolation of the influence graph
Clt_aar_ly E_(0)=Oo(because of the spin-flip symmetry of i given someJ, all the clusters of the influence graph are
the distribution ofo”) andE(%)=—d|J,,|. We now choose finite) and there is no possibility of zero energy flips, then
any fixed numbere>0, and letN; be the number of flips  every sping, can flip at most finitely many time@or every
(over all timg of the spin atx (i.e., of lattice animals con- ;9 and for almost every,). This is because the dynamics is
taining x) that lower the total energy by an amouator  effectively localized: the dynamics oA of the infinite-
greater. Because-d|Jy,|<E(®)<—(e/M)Ng, it follows  volume spin configuration breaks up into dynamics on dis-
(for almost everyJ, o°, and wy) that, for everyx and  connected finite regions. The result then folloges in the
everye>0, Ng is finite. Then ife, is the minimum possible analysis above of finite-volume dynamic# influence per-
magnitude of the energy change resulting from a flip of acolationdoesoccur, then no conclusions can be drafwith-
lattice animal containing, we need only show that >0 for  out further information on whether spins can flip infinitely
every x. The value ofe, of course varies withk and will often. We note that fod=1, any continuous coupling dis-
depend on botly7 and the value oM in the dynamics mea- tribution will result in influence nonpercolation.
surePy . Let Ay, be the magnitude of the minimum en-  An example of a system where influence nonpercolation
ergy change, in all spin configurations, over flips of all latticeoccurs(and so the dynamics convergés the “highly dis-
animals of sizek containingx; clearly A4 >0. Thene,  ordered” model of Refs[61-63. Here the couplings are
=min; < <mA kx>0 becauses <o. volume dependent and “stretched out,” so that in large finite
We have therefore proved for amy <o the existence of Vvolumes, the magnitude of any coupling is at least twice that
a limiting states” for almost every7, o°, andw, . The of the next smaller one and no more than half that of the next
final statec” of course depends on all three realizations, andarger one. However, influence nonpercolation can also occur
will be an M-spin-flip stable state. Before exploring the con- in less extreme situations, in particular the class of models
sequences of this result, we turn briefly to a discussion oWve call “strongly disordered.” Roughly speaking, these are

some other systems. models in which the above condition on the stretching of the
. . couplings typically holds up to some maximum size volume
2. Strongly and highly disordered models (which still needs to be sufficiently largebut not for arbi-

There is a class of “strongly disordered” coupling distri- trarily large volumes. For a more detailed description, see
butions, where the mechanism for convergencesiafjle Ref. [55].
spin-flip dynamics is more localizg®5] than the one given
just above. This class includes distributions with infinite
mean as well as ones with finite meé&dthough we retain It is not difficult to see that the proof outlined in Sec.
the requirement that the coupling distribution be continllous 1l B 1 allows for a restatement of the dynamics convergence
These are coupling distributions such that “influence percotheorem as follows: giveM-spin-flip zero-temperature dy-
lation” [60] does not occur oZY; we note that this require- namics in an infinite spin system where the energy per site is
ment yields ad-dependent class of distributions. The reasonbounded, and the initial spin configuration is chosen from a
for convergence of dynamics is different in these cases, anspatially ergodic measure, there camth probability 1) be
a new approach based on the idea of influence percolation @nly finitely many flips that cause ronzeroenergy change.
needed. To discuss this we first describe the notion of influwe can therefore apply this result not only to disordered
ence. systems with noncontinuous coupling distributions, but also

3. Other systems
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to homogeneous systems such as uniform ferromagnets ahereoy, , is the value of the spimr, in the metastable state
antiferromagnets. Here the theorem implies that the questiop= and oy, is the value ofoy in o,,,. When M’
fc:if Cev?l\llireg:]eemceer IS Ilattlce'dependent.% For fexample, evtery spin M, Q. is the overlap of the replicasy andoy,” . We
P gy lowering In a uniform ferromagnet on a ., show in the following theorem, that for any finiké
hexagonal(honeycom lattice in two dimensions, so here there is an uncountable infinity of},’s [66], and that almost
too the dynamics will almost always converge from a ran- o Vo 0 Y 'V',O ,' )
dom initial spin configuratiofi54]. every pairay, oy (@s o’,oy,0' 0y, vary indepen-
What about uniform ferromagnets on square lattices®ently) has overlap zero. _ . o
Here we have provefb1,55 that the opposite is true: for Theorem 1in a dlsqrdered spin system with .Ham|lt0n|an
almost everyo® and w; (the result easily extends to multi- (1), for almost every fixed7 chosen from a continuous cou-
spin-flip dynamics, but we will not do so hérehere is no _pl|_ng d|str|but|o'n wlth finite mean, there is an uncountable
convergence of the dynamics because every spin fitifiss  infinity of M-spin-flip-stable states for ariy [66]. Further-
nitely many times. It must remain true that every spin under-more, for anyM andM’, almost every pair has overlap zero;
goes 0n|y f|n|te|y many energy-'owering f||ps’ SO thereforei.e. (for almost eVeryj), the infinite-volume OVerIap distri-
every spin must undergo infinitely mamgroenergy flips. A bution of Qy v is a singles function at zero.
more global viewpoinf51] is that there exists no finite ime ~ Proof. We first show that almost every pair of metastable
after which the spins within some fixed, finite region remainstates ¢ ,o,,,), has zero overlap, and then, by takikty
in a single phase; that is, domain walls forever sweep across M, show how this implies an uncountable infinity of meta-
the region. We do not yet know what happens in uniformstable states. For a fixginite) M and almost every/, we
ferromagnets oZ® in dimensions higher than two, although showed in Sec. Il that for almost every and wy, the
numerical simulationg64] indicate the possibility of dy- dynamics converge to a limiting metastable state
namical convergence in five and higher dimensions. ga(go,wM)_ Consider two such final states, andgl’vlﬁ . as
Finally, we briefly discuss the-J spin glass(and related  gefined above. Clearly their overla®y, ' is a measurable,
models. In two dimensions, we can shd\i7] that this is an  trans|ation-invariant function of its five arguments. More-

intermediate case(for almost everyo® and w;) a positive  gyer because each of the five distributions from which

fraction of spins flip infinitely many times and a positive J, 0° wy, o'®andw’,, are chosen has the property of
1 L L M!

translation-ergodicitysee Ref[67] for a discussion of this
continuous distributionge.g., the couplings can take on onlyrbrOperty and its ugeit follows that the same property holds

. . . . . 0 ,0 !
two or a finite number of values, and the distribution needfor the joint (producl _dlstrlbutlon of (7,07, om 7 ‘wM_’)'
not be symmetric about zerrdn all of these, a limiting state | "€ translation invariance of the random variaQi¢which

o does not exisf65]. For noncontinuous distributions other 1S immediate from the right-hand side of E@)] then im-

than +J models. these conclusions remain valid for @il Plies that it must be constant for almost every realization of

=2 (whether that is so for-J models is unclear (J,0%0y,0'%wy,,). Let us suppose that this constant
A discussion of these systems was included only for comvalue q is nonzero. By the spin-inversion symmetry of

parison purposes; our primary interest in this paper will be inrHamiltonian(1), we must have

ordinary spin glasses and random ferromagnets with continu-

ous coupling distributions. We now examine the conse- 4=Q(,0°% wy ,(,—’O,w,(/l,)

guences of the results from this section.

=-Q(J,0% w0y, —0'%w,,)=—1q (5)
IV. NUMBERS AND OVERLAPS

OF METASTABLE STATES for almost every realization. In the last step we used the fact

10 10 i

In Sec. Ill we established that otd-spin-flip dynamics that —o’" can be replaced by becaau_seQ Is constant
converges to a final staie” for almost every7, o°, and almost surely(and the distribution otr"" is spin inversion
oy - We will hereafter denote by, the final state reached symmetrig. It follows from Eq. (5) thatq=0.
in this way. By the definition of the measuig, from which Now takeM’=M, and suppose that there were a count-
the dynamical realizations,, are chosen, it immediately able numberincluding the possibility of a countable infin-
follows thatay, is anM-spin-flip stable statéfor 7), which  ity) of M-spin-flip-stable states. This would imply that, with
is also a function of® and wy . positive probability, two independently chosen starting con-

It will be convenient to use a shorthand notation. whergfigurations and dynamics would result in the same final state,

(for fixed J) o3 denoteso?;(a° wy) and a,’vfo, denotes which would have a self-overlap afll, so thatQy m vyould
o 0 1 0 , i have aé function component at- 1 with nonzero weight. It
oy (0" 0,,), whereo'” and w,,, are chosen indepen-

v 8 . follows that, for any finiteM, there must be aoncountable

sent a pair of replicas. We define the overlap y+ of oy Remark.A crucial step in the proof is the existence of a
anday,, in the usual way: limiting final state, i.e., almost sure convergence of the dy-
namics. It is the absence of this knowledge that prevents us
QM,M’:Q(kZO'vaM .U'O,w{w) from reaching similar conclusions about ground stagesc.
X) or pure states at positive temperat{é] if broken spin-
=lim[A ™t Y T xTr x» (4)  flip symmetry should exist(We note also that in other re-

Lo xe A spects, the method used in this proof is similar to that used in
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the proof of theorem 2 of Ref51].) It follows that the con- V. ENERGIES OF METASTABLE STATES
clusion of theorem 1 holds also in other models where the

q . h the hiahl d st W di We now turn to a discussion of energies of the metastable
ynamics converge, such as the highly and strongly diSOrg;ie5 Our first result is to show that our dynamical construc-

dered models discussed in Sec.(But in these models the yields a probability measure on thé-spin-flip stable

conclusions can also be obtained by more concrete argygnfigurations such that almost every one has the same en-
ments based on the localization of the dynamics due to iNargy density(i.e., energy per sije
fluence nonpercolation, as discussed ?move Theorem 2For any dynamical measuf, (defined as in

The con_clusmn _of theorem (with M"=M) holds for a  sec. I), almost everys; has the same energy densiy; ,
general pair oM-spin-flip stable states. In Sec. VIIl, we will \yhich is also independent of the coupling realizatj@n
discuss how this conclusion is modified for two metastable pygof. Because the energy density of any metastable con-

stgtes dynamically evolved fromsingleinitial spin configu- figuration o7,(7,0%wy) is a measurable, translation-
ration. We now discuss some of the consequences of theqs - iant function of7, o° andwy, it immediately fol-

rem 1, particularly for the proposal that the Hamming dis-|,\5 by the same argument used in theorem 1 that the energy

tance between metastable states scales with their bam%nsity of theM-spin-flip stable states is the same for almost

helg_ht, .and that this might lead to a pOSS|_qu uItrametnc Or'everyj,ao, andwy, .
ganization of metastable states in realistic spin glasse

[7,15,16. A possible relation of this kind has been conjec-

tured[33,34) to lead to an ultrametric organization of pure where the data indicated convergence to a single value of the

states in state spa¢68] in the SK model. densiti f th —spin-fli tastable stat
An analysis of this conjecture is hampered by the lack Ofenergy ensities of theone-spin-flip metastable states as

| derstandi f how to define th barri system size increased. Although theorem 2, as stated, is re-
a clear understanding of how 1o definé he energy barmeLyciaq to systems where the dynamics converge to a limit-
between two metastable states, in the natural context

) o ; o q g o”, which is not the case for thetJ spin glass in two
single-spin-flip _Glauber dynamics at posmve_temperaturedimensions[S?]' the same arguments imply much more gen-
Hov(;/e\{er,thp053|ble f.prlggress (|)3n these ciueggsoGns hhas be%'?ally convergence to singlelimiting energy density.

.mg' etmd tr? met:;n:[ 1€ %as?. revious .Stu@ b 9 ?:.’eh Even though our dynamical construction yields a prob-
Indicated there that a critica energy exists above whic ability measure on thi-spin-flip stable configurations such
the (one-spin-flip-stable metastable states are uncorrelated,[hat almost every one has the same energy density, it is in-

?nd ha\t/)e ZEro ovz(ajrlaﬁ, and be:qu{ which correlatlonts dbeéorrect to conclude that there does not exist a spectrum of
Ween barriers an amming distances are expected nergy densities amorajl M-spin-flip stable configurations.
emerge. So it is reasonable to expect that one should conflqgOr anyd and for most models there will be a nontrivial
one’s attention to energetically low-lying metastable State§pectrum in the sense to be described below: this spectrum

[34] (s_ee also the di.SCUSSion on proper weighting Qf thecan even be calculated in special circumstances, such as for
states in Ref[33]). It is also clear from general consider- the one-spin-flip stable states in one dimengié]. (Simi-

ations that, because the dlste}nce bgtween two states Is SyiH'rIy, although the magnetization per spin is zero for almost
metric between them but their relative barriers are not, an very metastable state, a spectrum of magnetizations in one

analysis should be confined to states with roughly the samg; < cion was computed in R¢A2]. We will return to this
energy(or energy density, in the infinite volume ca$é4]. topic in Sec. VI)

h B_ecaufsg we W'II IShOW n Slec. \t/ théfor a gtlvetn '\t/)ll an(tj ; To clarify this issue, consider one-spin-flip stable states in
choice of dynamica proce)s;a most every metastable staté o continuously disordered spin glass or ferromagnet in one
has the same energy per spin, the above issues are alreadyd'ipnension. The infinite spin chain can be broken up into

part add_ressed. But the more crucial point is that in anYinfluence clusters.” as described in Ref&4,55 (see also
subsetwith nonzero measuref the set of all metastable ¢.. || 2: these are the finite spin chains bounded to ei-

states, the same C(_)nclusmn W'II hold; that is, almost everyy e, gjqe by couplings whose magnitudes satisfy the condi-
pair chosen from this subset will have zero overlap. We con:;
clude that for realistic spin glasses, and supposing that bar-

riers between states can be defined in some natural way, |Inn+al <min{|In- 10l Ins1ns2l}s (6)
there should be no general scaling of barriers with Hamming

distance. This is because almost every pair of metastabl@here the integen denotes a site along the chain. Because
states will have zero overlap, and either almost every paithere is no frustration, every coupling within every influence
also has the same energy barrier or else there’s a distributicziuster is satisfied in every one-spin-flip stable state, and the
of such barriers. In either case, there is no nontrivial scalingouplings between the influence clusters—i.e., those satisfy-
of barriers with Hamming distance between states. Furtheling Eq.(6)—can be arbitrarily satisfied or unsatisfied. So one
more, this conclusion remains the same when consideringan, for example, take any percentggef these “weak”
metastable states of differekt andM'. It should be noted, bonds to be satisfied and still have a one-spin-flip stable
however, that these arguments do not rule out the possibilitgonfiguration, resulting in a spectrum of energy densities
of some kind of scaling between pairs of stateszefo = among the set of all one-spin-flip stable statep &svaried.
probability—but such pairs are of negligible significance for  This example illustrates the important point that one must
deep quench dynamid¥0]. It might be thought that this be careful in specifying what measure is imposed on the
conclusion may not apply to finite volumes; however, wemetastable states before discussing the distributions of ener-
will argue in Sec. IX that the overlap distribution approxi- gies, magnetizations, and other physical quantities over those
mates ad function at the origin for large finite volumes. states. In the 1D example under discussion, each one-spin-

S The result of theorem 2 is consistent with the findings of
the numerical investigation ¢#4] of the 2D = J spin glass,
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flip stable state for a giver7 is specified(modulo a global Theorem 3.The energy densitieEy(R;, ... ,Ry) and
spin flip) by an infinite sequence of coin tosses—one forEw+1(Ry, ... Ry.1) satisfy Ey>Ey., providing that
each weak bond. Here an outcome of “heads” on a particuRw +1 is sufficiently small for givenR,, ... Ry (and the

lar toss implies that the corresponding weak bond is satisfie@ssumption mentioned above on the coupling distribution is
and “tails” implies that it is unsatisfied. The probability Satisfied. Moreover,Ey for any finite M is larger than the
measure on the set off(j,wl,oo)’s imposed by the dy- ground state energy density, whidor any R;,R,, ...) is

namics and initial conditior(for fixed [7) corresponds to thePIimi'; OE]: E'V'h aSMH;'f he divelrR - |
independent tosses of an unbiased coin, which is a natural roof. By theorem 2, for the givemy, . .. Ry, almost

measure for the purposes of analyzing outcomes of deeP/€Yom Will have the same energy densky, . For a given

guench experiments. However, one could arbitrarily imposéargeg' We can Chf)O.SRM”l small enough so tha,t _thﬁ. en-
other measures, for example, those corresponding to flips S enS'tyEM*_l(t ) is as close as we want Eqw(t ): t. IS
a biased coin; specifically, where the probabilitg of an IS pecauséz,v,ﬂ is so small that ‘“?'y avery t!ny d(_ansny of
outcome of heads on ea@independentflip hasp+ 1/2. For rigid M+1 C_Iusters hav?/ been tf/llpped by timé (in the
any such fixedp, there are also an uncountable number ofPm+1 dy”?‘@'@ so thatoy, and Tmy1 Ar€ Very close. Fur-
one-spin-flip stable stateexcept wherp=0 or p=1), all thermore ift’ is Iar.ge.e.noughEM(t ) can be made as close
(outside of a set of measure zewith the same energy—but as we want to_the limiting valug,, . So, for any smalb, we
the energy depends n can choose first’ and thenRy,,; so that(a) |Ey1(t")
Although this is relatively straightforward for the single- EEM|b<5 arf1|(_j(b) gtbmo_stg d_ensrlltﬁpof ”g'g M+1 clusters
spin-flip case(even in higher dimensionst becomes more a\_/reh eent 'F;pt(; y t'r?_ (![n t r? Mt+h1 ty”a:ﬂ'c3-_
complicated when analyziniyl-spin-flip stable states with e, rest of the proot 1S to show that as ime increases
S from t’ to « in the Py, ¢ dynamics, enough other rigiwl
M>1, because now the energiég can in principle depend +1 clusters will flip to lower the energy density from
on the relation between the ratBs for j-spin-flips (defined E,(t') by more tharl?&. To do this. it suffic?eys to shos\//v that
in Sec. l) asj varies between 1 and. To see this, consider M '

) ) for almost every pai7,¢°, there exists a density of local
Fhe casd_\/l =2, and_two different ch0|_ces g corresponc_i- configurations(of .7,¢°) for which one hasvl-spin-flip sta-
ing to different ratiosR,/R,. Returning to the 1D chain, pijiv byt for which a flip of some rigidM +1 cluster will

consider the final states;_ and 0., obtained when the |ower the energy by at leagt Then the desired result fol-
rates are chosen so thRb/R;<1 andR,/R;>1, respec- |ows by pickings small enoughdepending orp ande).

tively. In the former case, the dynamics allows the system to Here is one way to find such local configurations. First,
find (approximately a one-spin-flip stable state state first, in suppose.7 is such that there is a linear chain ovi2-1
which the probability that any given weak bond is satisfied iscouplings all of whose magnitudes, except for the coupling
close to 1/2; the energy associated with the weak bonds iat the very center of the chain, are very close to some
then lowered further by rigidly flipping neighboring pairs of “large” value J;. Suppose further that the center coupling
spins. In the second case pairs of spins are flipping rapidlynagnitude is close to an “intermediate” valul and all
compared to single spins; there is no reason to expect thether coupling magnitudes within distan¢approximately
energies Ob'azc< ando-(;> to be the same. Indeed they can beM of the |inear- Chain.ha-\/e magnitudes CIOS(_-Z‘ to a “small”
shown to be generally different in one dimensitin the ValueJs. What is crucial is not the a})b_solute sizes of this
limits R,/R,—0 and) by a more detailedbut lengthy but thatJ;>J,>J;. Next supposer” is s_uc_:h that at tlme
analysis. zero thg M “large” coup.lmg_s are aII_ sz_msﬂed but the “in-

In general, one might consider for arbitraly a natural tgrme@ate” center coupling is ungausﬁed._ Such a Igcal con-
dynamics where, for eadh<M, the system first converges figuration(which will occur with strictly positive dtlens[ty_ be-
to a k-spin-flip stable stater, before rigid k+1 clusters cause of our assumptlp_ns on the _coupl_lng dlstrlputwnl
begin to flip. Roughly speaking, this corresponds to a Iimithave the desired Sta.b'!'ty properties wmappromm.ately
where each of the ratidd, . ;/R,—0. A motivation for such equal toJ,. Here the rigidM + 1 cluster to be flipped is half

a choice is that the systems of interest are at low tempere?—f the linear chain on either side of the center coupling.

tures, and a natural scaling with temperature of the ratio To prg;/,ebthe f|n$sta§e?¢nt, V;T let be S%ml\; lground
Ry.1/Ry is as exp—f(K)/T], for some positivef(k). The state an ) edsom ~Spin Tip S.t"’? € statéwit arge.
next theorem is motivated by such a dynamical choice. We consideiZ® as the union of disjoint cubes that are trans-

For the first part of the theorem, our proof requires more!ates OfA_ 44, with L chosen so that the volume of each cube

about the common distribution of the couplingg, beyond ' bellowM;ffach ICUbs shzuld be thﬁUth of asb?lf‘ intﬁfmr
our general assumptions that the distribution is continuouga_ns_ ate 0 ,L) plus boundary. BY t. e metastability, the re-
with a finite mean: the possible values |d§<y| include at strlgtlon ofo’ to any mterlo.r. is aflnlte—vplume ground state
least three very different scales—i.dy,J,,J5 with J,/J, for its own boundary condition. Hence if we constructra

and J,/J; larger than some dimension-dependent constant.)0 agree witho on all the interiors and withr” on all the
That will be so(in all dimensions for a given distributipif ~ 2oundaries, the energy densi of o must be higher than
the possible values dfl,,| can be arbitrarily large or arbi- E of ¢’ (because we no longer have ground states in the
trarily small (or both. This includes Gaussian spin glassesMerors J‘or the boundaryd(_:?nd(:tmhsOn Ehe other h_alnd,
and disordered ferromagnetr spin glasseswith a uniform  cléarly E"—E is of orderL"™ “/L". ThusE'<E+O(L ")

distribution on (QJ) [or on (—J,J)]; it does not include and hence IiruﬁxEng. All ground states have the same
disordered ferromagnets with a distribution ah—(e,J). energy densityE (as can be shown by a similar argument
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and it readily follows that the energy density afy spin
configuration is at lead; thusEy,=E and hencé&),—E as |Jxo|yo|>max Al el-1
M —co, completing the proof. ' Zogéyo

|Jx0,z| |‘]y0,z’|

2":llyo-2'|I=1
7' #xg
()

VI. REMANENT MAGNETIZATION Therefore, if such a bond is satisfieddf, it remains satis-

Suppose that a spin glass with Hamilton{dhis prepared fied fqr all time. We will refer to thesg as “‘strong” bonds.
in the uniform initial stateo,=+1 for all xez? and We Wwill see that these bonds determine the remanent mag-
evolves at zero temperature through the usual one-spin-flipetization, so we first need to compute their density in almost

Glauber dynamics. What is the typical magnetization of thefVery coupling realization. _ o
metastable state into which the system evolves? This quan- 1 n€ probability %f any g|;|venhbondf havmgt;)_thls s':rong-
tity is of interest because it is related to experimental meall€SS’ Property is identical to that of an arbitrary element

surements of the thermoremanent magnetization in Iaboraix X X ), chosen from a common continuous
tory spin glasse§2,3]. For the continuously disordered spin \/"1:7*2! * * - »74d—-1/s ; :
y spin g 82,3 y P distribution, having the highest value in the s€fhe X;'s

E;;ugqmpoﬂe @mt;r:smn ”:.'S q'uatﬂtlty was found to.ﬁ)e.llshere represent the magnitudes of a given coupling and its
| ' f' ?Q¥V|ngtheprac ice ln osetpapigrs, Wedvt\;' S'T'Ad—Z neighboring couplings. Since eachX; is equally
ply refer to 1t as the remanent magnetization and denote Iﬁkely to be the highest value, it follows that the probability

Mrem- of an arbitrary coupling being strong is 144 1). Then, if

The questilion can be recast ’r,nore generally.a_s' finding .thﬁs is the density of spins that are located on either end of
value of the “remanent overlap” between the initial and fi- strong bonds

— i -1 0 o«
nal statesgen=lim__ _[A,] Zxea, Ox0y - Because of the

call it X;) in a set of 4—1 independent random variables

translation invariance of this quantity, it will be constant for ne=[1/(4d—1)]x2xd=2d/(4d—1), )
almost every7, ¢°, andw; thus no further averagin¢pe-
yond the spatialis needed. By a simple gauge transforma-
tion argumen{see the end of the proof of the next theojem
for a symmetric spin glase., where tkle couplings are sym- lattice Z% of the number of bonds to the number of spins.
metrically distributed about zeyoq,em= Mem- Put another To find th | i hat d h
way, the question as to the value of the remanent overlap is o find the re(r)nanent overlap, we first note that, due to the
how much direct memory of the initial state does the ﬁnalrandomness 0", exactly one half of the strong bonds are

state retain? This version of the question is as relevant fo?‘at'S]cled at time zero and will contribute ter, and the

random ferromagnets as for spin glasses, and so we wifither (unsatisfiegl half will not contribute (becausg inoc”
hereafter address the problem in both its forms: i.e., as th@verdeUCh tr)]ondkl)wll dbe:) slzat|sf|e¢l :Vhat_abogospr:ns cr?n—
remanent overlap of a continuously disordered system d);_Jelecte o ?t er onf Sh' t was sbowdn in P[h ]hF Elt ‘d?
namically evolving at zero temperature from a random initialMUence clusters of the strong bonds in the highly disor-

state, and also as the remanent magnetization of a symmet X redtmo?el have Ia treelike lstruc_tqre, f"e" .cq:’ltam no tl100pts
spin glass evolving from a uniform initial state. IS structure on a larger scale, arising for simiiar though no

t'tsientical reasons, also defines the static ground state proper-
)}les of these models; sd€1,63). Because of the treelike

M-spin-flip stable state. However, when the initial staféis  'Nfluence structure, ther’s for these otheis are com-
chosen in a special way.e., all plug, we expect to “land” pletely independent of the correspondinfjs and it follows

in a one-spin-flip stable state with positive magnetizaficin that they also contribute zero to the remanent overlap. There-
the discussion following theorem.2The next theorem pro- fore,

vides a general result for highly disordered mod&sc. Il

where the factor of 2 arises because each strong bond con-
nects to two spins, and the factor dfis the ratio on the

in any dimension. We will see that the resolf.,,=1/3 in Qrem=3[2d/(4d—1)]+0=d/(4d—1). 9
the ordinary 1D spin glass immediately follows as a special
case.

The last claim of the theorem follows now by a standard

: Theqrem 4.Considgr the highly disordereq quel ol __gauge transformation argument, which converts a rana®m
dimensions described in Sec. lll B 2, undergoing single-spin-

fiio d . : ‘ ture f dom initial st t|nto a uniform all plus state, at the expense of doing a cor-
'E’ ynamics at zero temperature from a r%n om infial sta eresponding transformation to the couplings. But for a sym-
o”. For almost every coupling realization” and w4, the

. o 0 metric spin glass, the resulting coupling configurations are
resultingo; V\_/lll_have a remanent overlap W'ﬂ? equgl o identically distributed with the original ones, which com-
d/(4d—1). Similarly (and consequentlyfor a highly disor- pletes the proof.

dered symmetric spin glass, if the inital state is uniform with"  ramark. In one dimension Eq(9) reduces tom,g,

ox=+1 for all X§Zd_, then the resultingry will have @ —1/3 4 result found in Ref56] (see also Ref42]). This is
remanent magnetization equaldf(4d—1). not a coincidence, because the two ingredients used in the
Proof. From the definition of the highly disordered model proof of theorem 3—the property that a coupling whose
on Z¢, it follows that any coupling, , that is larger in  magnitude is greater than those of any of its neighbors sat-
magnitude than any of its 2¢2-1) neighboring couplings isfies Eq.(7), and the additional property that all influence
will automatically satisfy the following condition: clusters contain no loops—occur automatically in any 1D
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model with a continuous coupling distributioin that sense, N
continuously distributed 1D models are already “highly dis- q'=lim (UA]) X (oly2=(cl)?. (12
ordered.” Lo xehy

What about realistic models in dimensions higher than )
one? We present now a heuristic derivation of a lower boundThe equivalence of the two fgrmu_las fof follows from
for myen(d), based again on the density of strong bonds. Thdranslation-ergodicity. When o exists, thenqp is also
condition for a strong bond is given by E€7), which in-  given by the same expressions as in Etp), but with o,
volves two independent sums ofi2 1 random variables, replaced byo; . As already noted, the order parametgy
X1, ... Xoq_1 and X}, ... X54_,, corresponding to the measures the extent to whiett is determined byr° rather
absolute values of the couplings at either end of the stron§ian byw, (for fixed 7). This is because the middle expres-
bond. Using the independence of the sums on either side &ion of Eq.(12) is the overlap between' and ¢'* corre-
the bond, we find the following formula for Prgid.), the  sponding to independent replicas andw; but the samer°
probability of any given bond being strong, whdredenotes ~ (See also theorem 6 belovf courseq=1, because’ is

the probability density function foX,+ - - - + X, : completely determined by, while a valueqp=0 would
mean that for everx, ¢° yields no information about; .

2 We now present an exact result in one dimension earlier

dx. (100  proved in Ref[55].

Theorem (Nanda-Newman-Steirfp5]. In the one-
dimensional disordered model with continuous coupling dis-
tribution, qp=1/2.

Because the technical proof appeared in R&%|, here
we present only an informal version. The idea is that, as
discussed earlier, the one-dimensional chain breaks up into
i . o disjoint dynamical “influence clusters,” bounded on either
However, this expression assumes that the contribution of 4 by “weak” couplings satisfying Eq6). Each of these
fche spin_s on all other bonds is pqsitive or zero. AIthough this|usters is governed dynamically by a single “strong” bond,
is plausible, we do not have a rigorous argument for it, andsy \hich we mean that once the spin configuration is such
so the result in Eq(11) should be considered heuristic. that the strong coupling is satisfied, the state of the spins of

The larged behavior of Eqs(10) and(11) depends onthe = \yithin the rest of its influence cluster is completely de-
nature of the common distribution of the individual cou- (ormined (by the signs of the couplingsPut more pictur-
plings. For example, if it is a uniform distribution on eqqely, there is a “cascade of influence” emanating from
[—J,J] (so thatf,(x)=1/4 on[0J], and zero elsewheye the strong bond and trickling down to either side of its influ-
one finds that Prol§Js) behaves as exp-4d In(d)=0O(d)) as  ence cluster, until all couplings within are satisfied. This
d—oo, while for a Gaussian distribution, the 4 in the expo- means that a spin value &« is already determined by[
nent is replaced by 2. We spare the reader the details afnd ¢° if the strong bond in its influence cluster is satisfied
these calculations and estimates, but note that if on the otheitt=0, and is completely determined ly, otherwise. Be-
hand, the magnitude of the couplings could neither take ogause this satisfaction probability is 1/2, the result follows. It

Proty(Jg)= fox?‘l(x)[ fO?Zd_l<y>dy

Following the same procedure as in E8) yields a formula
analogous to Eq9):

Mren=d  Proby(Js). 11

very small nor very large valudg.g., if thed,,'s were uni-  js not difficult to extend this result to the highly disordered
formly distributed on[—J,—€]U[€,J]), then Prob(J;)  model in any dimensiof55] where, because all influence
would be identically zero above some dimension. clusters have a treelike structure, the idea behind the proof is
essentially the same.
Nature versus nurture For the ordinary spin glass or random ferromagnet, we

) cannot computep precisely, but it is easy to show that strict
A problem related to remanence is to ask for the extent (g, alities hold at either end; that is<@p<1, so the final
which the final state is determined by the initial spin conf|gu-State is not completely determined either by the initial state
ration. This should be distinguished from asking for the frac-(qD: 1) or by the dynamicsdp=0). We refer the reader to

tion of spins that have theamefinal value as their initial Ref. [55] (see the proof of theorem 4 of that papéar the
value; rather, we are asking here what percentage”ofs argl.Jment.

determined bys®, where the remainder will depend on the
dynamics realization.
In order to quantify this, we introduce a quantity previ- VII. BASINS OF ATTRACTION

ously considered in Ref55]. This quantity, denotedp, is The basin of attraction of a metastable stafg may be
a kind of dynamical order parameter somewhat analogous t9afined as the set of starting configuration$ such that
the Edwards-Anderson order parameaigey. Let(-) denote o (0%, @) = ayy for almost everyw,, . (This generalizes to
the average with respect to the distributi®n over dynami- M'\—Aspin,—ﬂip dynamics the definiion given in Ref42]. A

cal realizationso,, for fixed J and o°. Here we wil (l,JS.e an  similar definition for the basin of attraction offaire state at
oyerbar to denote thg remaining averages ovenda”, i.e., positive temperature was given in RE51]; see also related
with respect to .the Jomtt d'Str[byt'o'ﬁ’J”‘?:.PJX. P0. We discussions in Ref.71].) Properties of basins of attraction of
then definegp =lim,__q" (providing the limit exists, which  etastable states have played important roles in studies not
it does in the ordinary spin glass and random ferromggnetonly of disordered system dynamics, but also those of neural
where nets, combinatorial optimization, and related types of prob-
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lems where many locally optimal solutions exist. Here we Proof. Throughout this proof we suppress the dependence
ask the following question: how lardén the sense of the of the two final states on®, because both metastable states
infinite-temperaturéuniform) distribution on spin configura- are understood to evolve from the same initial state; we also
tions| is the union of all the domains of attraction of all the suppress thél =1 subscript oro™. Then the overlap of the
metastable states? two final states is

Theorem 5Under the same assumptions on the coupling
distribution as in theorem 3, almost every initial configura-

. . i -1 © SN

tion ¢ is on a boundary betwegftwo or more metastable lim [A| XEEA oy (w1)o, (w1)

states. Thus the union of the domains of attractiomlbbf Lo -

the metastable states forms a set of measure @erthe :Ey,oo,wl,w;[ﬁf(wl)fff(wi)], (13

space of allo®’s).

Proof. For M=1 (and without the extra assumptions of . e
theorem 3, the result follows from the fact, stated in Sec. vi WhereE; denotes an average with respect to the distribution

and proved in Ref[55], thatqp<1 strictly for disordered V€' the couplings, and similarly for tr_]e other Qistributions.

models with continuous coupling distributions in any dimen-Equann(lS) follows from the translation-ergodicity of the

sion. That is, for almost every and o®, the final stater’, distributions from which the couplings, initial state, and dy-
. y ’ M

. T namical realizations are chosen, along with the translation-
must depend on the dynamical realizatiog) ; the outcome . : ) o
: . 0 invariance of the overlap. Because the dynamical realizations
is not determined purely by". , . .

To show forM>1 that the outcome is not determined “1 andw, are chosen independently, it follows that
purely by o, we consider the same type of linear chains of ” o - )
2(M—1)+1 couplings as in the proof of theorem 3—again E 0000 [0x (@10 (01)]=E 7,0 Ey, (0y (01))]°=0p -
with all couplings other than the center one satisfied at time (14
zero. Then the final state of the spins along that chain is
detgrmi.ned_byw,\,, , 1.e., by Whilch of the two halyes of the IX. EINITE VOLUMES
chain flips first so that the chain becomdsspin-flip stable.

Remark.Similar results for pure states were proven in  Most of the preceding discussion concerns infinite-
Ref.[51]—i.e., that, if many pure states exist in the ordinaryvolume disordered systems. Because experiments and nu-
spin glass in some dimensi@hand temperaturd@, then the  merical simulations are done on finite systeaad in the
union of their basins of attraction form a set of measure zerdatter case often not very large onei$ is important to study
in the space of all spin configuratiogniformly distributed how the theory of metastable states constructed so far is
in the usual sengeThat a similar result holds for metastable modified when attention is restricted to finite volumes. It has
states is not necessarily surprising, but we believe that moreften been the case for conventional homogeneous systems
is true, i.e., that almost no metastable state lives in the basithat both thermodynamic and dynamical behaviors in infinite
of attraction of a single pure or ground state. Tlvidich we  systems are a straightforward extrapolation from behavior in
shall pursue elsewheravould seem to contradict a standard large finite volumes; however, recent work has shown that

view in the literature. for disordered systems such simple extrapolations can often
fail, and in general the relationship between the physics of

VIIl. DYNAMICAL EVOLUTION FROM A SINGLE finite and infinite systems can be subji¥,75,78.
INITIAL STATE We therefore re-examine many of the questions previ-

ously raised and answered for infinite systems in the context

We now revisit the questions discussed in Sec. IV from &f a finite system on a cubg, of volumeV =LY spins. The
different standpoint. In that section we discussed the naturgyrst question we will address is how the number of meta-
and distribution of overlaps for pairs of metastable statestable states scales with volume. We showed in theorem 1
(independently chosen from theentire set{oy,} of M-spin-  that for infinite systems the number MEspin-flip metastable
flip stable states, generated through our dynamical procestates is uncountably infinite in any dimension; it is natural
dures. Here we considerrastrictedsubset of the one-spin- then to expect that this number scales exponentially with
flip stable states, which, although still uncountably infinite, isyolume (in a d-dependent fashigrfor finite systems, and we
a set of zero measure of the one-spin-flip stable s{atgs. will now prove that this this is true in general. In some mod-
This is the set of states dynamically generated frosingle  els, like the ordinary 1D disordered chain, or the highly dis-
a° (chosen from the usual infinite temperature distribution ordered model in general dimensions, the scaling behavior of
Information on states chosen from this restricted set may bthe number of one-spin-flip stable states can be calculated
relevant to studies of damage spreadjii@—74, which in  exactly.
some formulations examines overlaps of pairs of states dy- Theorem 7.Let Ny 4(V) denote the number d¥i-spin-
namically generated from the same initial state. flip stable states in the cubg, of volumeV=LY in d di-

Theorem 6.For fixed 7, consider two metastable states mensions. Under the same assumptions on the coupling dis-
o7(0% w;) and o (0% wy). To simplify the notation we tribution as in theorem 3: for the ordinary spin glass and
will in this section refer to these states @$ and¢'”, re-  random ferromagnetly 4(V) =exdO(V)], in the sense that
spectively. In all case®; andw; are chosen independently. Ny 4(V) is bounded above by ebay,(d)V] and below by
Then for almost every such pair, the spin overlap equal@xday(d)V], where the coefficients,,(d)>0 and ay,(d)
Op>0, whereqp is the dynamical order parameter defined <c depend on the model chosen. In both the highly disor-
as thet—co limit of q' in Eq. (12). dered spin glass and highly disordered random ferromagnet,
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for  M=1, V- 'In[N;4(V)] converges to a;(d) finite volumes. The answer @), showing convergence of
=(dIn2)/(4d—1) asV—oo. the dynamicgwithin a volumeA | and with specified bound-
Remark As already mentioned, results for the highly dis- ary conditiong to a limiting af,_), was already provided in
ordered model also apply to the ordinary 1D disorderedSec. Il A.
chain, where the coefficient becomes(1)=(In2)/3, in Why is it important to study this? The reason is that it is
agreement with earlier calculatiof40,42. not necessarily the casepriori that the answers t4)—(6)
Proof. We will prove the second claim first. Computation would hold, even roughly and in a qualitative sense, for large
of the exact number of one-spin-flip stable states in thejnjte volumes in the limit as — . It could conceivably be
highly disordered model consists of two parts: computing thgne case, for example, that the overlaps between final states
density of strong bondsatisfying Eq(7)], and showing that o\ slved from two arbitrarily chosen initial states, and with
the number of one-spin-flip stable states corresponds to thgependent dynamics, mighot be concentrated about zero
number of ways to satisfy all the strong bonds. in finite volumes of arbitrarily large sizéeven though the
The density of strong bonds in the highly disorderedqyeriap would be exactly zero for the infinite volume system

model was already computed in the proof of theorem 4, inyccording to theorem 1 of Sec. JMinstead, it might be, if
the discussion preceding E(). From that discussion, the g6 |ooked at many pairs of initial states and dynamical re-

average number of strong bondg(d,V) in volumeV satis-  jjizations, that one would find a distribution of final state
fies overlaps spread over many values, which waubdincreas-
ingly concentrate about zero hs—o. This would be a type

of dynamical analogue to the “nonstandard SK picture,” or

. e o a similar thermodynamic scenario, raised as a logical possi-
Each strong bondwhich must be satisfied in alM-spin-flip bility in Refs. [67,75 (but ruled out as a viable option

stable st.ates, for ‘f’mM) can be ;atlsﬁed In two ways, cor- through a combination of rigorous and heuristic arguments in
responding to a simultaneous flip of the two spins at e'thehef [76])

end of the bond. To complete this part of the argument, we We will now show that such scenarios should not in fact
need to show that the number of one-spin-flip stable StateS.c - that is. the answers {d)—(6) will hold to a good

(d,V) . . . . L .
eqm_JI_aIsa?bh. ' hat th in-flio d ics b kapprOX|mat|on in large finite volumes, and with increasing
,rodot |sd_vx{e_not_eftl att eolne-spm- P )r/]namlc_s re? ccuracy as their size increases. So, to use the example in the
Z” up into disjoint influence clusters, as shown in RefS. o ading paragraph, we would find that the distribution of

[55,60. These have a treelike structure, so that under onesyeians between final states evolved from pairs of arbitrarily

spin-flip dynamics each has two possible spin configurations,,,sen initial states, and with independent dynamics, would
related by a global spin flip; the spin configuration of eachy,g ¢ ,stered about zero in an increasingly tight distribution

influence cluster is determined entirely by that on the strong,| _, .. e will prove this rigorously for both highly and
bond. ) . . ., strongly disordered modelghe latter of which has similar
To prove the first claim of theOre.m 7, we V‘.”" estaphsh thermodynamic behavior to an ordinary spin glass or random
lower and Upper bounds fdiy 4(V) in 'the ordinary spin . ferromagnet and will provide convincing heuristic evidence
glass or disordered ferromagnet. A trivial upper bound iS¢ the same remains true for ordinary disordered models.
obtained by noting that the number of metastable states cany,r strategy will be to show that the final statﬁ) agrees

not exceed the+ total number of spin. configurations, so tha\;\’ith the infinite volumeo™ (in a way to be made precise
for any M, ay(d)<in2. To establish anM-dependent momentarily increasingly well ad.—~. (As always, our

lower bound, we consider first the cab=1. The density ot are for almost every state; in the finite-volume con-

of strong bondgobeying Eq.(7)] was computed in Eq10),  oy; 'this means the exclusion of an increasingly small prob-

but it is sufficient for our purposes here to note simply thaf‘ability event, typically exponentially small, in the volume.

under the assumptions of theorem 3 on the coupling distri- We now make these ideas more precise. Consider a vol-

bution, this dens[ty IS positive Is any dimension. . ume A with specified boundary conditions, such as free,
Even though influence percolation may occur in thesehxeol or periodic. As always we take\, to be a

models, the strong bonds are still satisfied or unsatisfied iny_jiensional cube of side centered at the origin. Consider
dependently of one anothend once satisfied, remain so for within that cube a smaller one, denot&d, , also centered at

all time)., as in tf}% T?hl\y disordered case. Thus there ahe origin, and withL"<L. The boundary conditions ofu, ,

(approximately 2417"e*@¥ ways for the strong bonds to be ay be the same as those an or different. Consider now

satisfied, and at least an equal number of one-spin-flip stablr% ¢ t t S
the two states () and oLy generated from a pair of initial

states.
The proof is completed by noting that fot>1, we may states and a pair of dynamical realizations that, in each case,
' are identical within the smaller volumg, ,. We define the

consider the same type of linear chains o2 1)+ 1 cou- _ ; \ t

plings as in the proof of theorem 3. Here the center couplingsfegion of agreement’(at timet) betweeno ) ando, ,, as

of the chains play the role of the strong bonds and the derthe set of sitex within A, whereo}L)X=a(L,)X.

sity of center couplings replaces Prdby in obtaining a We want to ask whetheffor most initial states and dy-

lower bound fora,,(d). This completes the proof. namical realizationsthe fraction of sites in\ | » belonging to
We now turn to the important question of whether thethe region of agreement at tinte=o is close to 1. More

results obtained so far for infinite systems—in particular, theprecisely, we want to know whether if we take first the limit

answerg4)—(6) discussed in Sec. | B 2—holtb an increas- L—« and thert—, the agreement fraction approaches one

ingly good approximation as system size increpsedarge  asL’'—c. If so, then we would be finished.

V™ ny(d,V)—[d/(4d—1)]. (15
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Let us examine this in more detail. Consider, for examplejn some finite time. This same time would set the scale for an
periodic boundary conditions on bothy andA,,. Because initial relaxation of a large finite-volume system. There must
a limiting final state exists in each volume, the probabilitythen be an additional time scale, dependingLoffior infor-
that the spino, at any particular sitex has not reached its mation generated at the boundary to propagate to spins deep
final state, i.e., will flip again, after a time,, must go to in the interior, changing their state. This new time scale must
zero asry increases for fixed’ andL. If this probability  diverge asL—~ because of the finite signal propagation
goes to zero independently bf andL as both become large time imposed by the dynamidSec. I); that is, for large
[i.e., if the probabilityg,.(7,) in A_, is bounded by an enough volumes the region of agreement of the final states
L’-independent functiom(,) that goes to zerp then we generated by finite-volume and infinite-volume dynamics
are done. Put another way, eventualfs system sizes in- would be most ofA, , up to time scales diverging with.
creasg the effects of the receding boundariésven ast The scenario described in the last paragraph is unlikely,
—o) are felt increasingly less. however, because it is already unlikely that finite-volume

To see why this proves the result, we can use this probenergy densities are lower than those for infinite-volume sys-
ability to choose a time where, say, 95% of the sites iy tems. It is noted only to show that, for any practical scenario
have reached their final configuration, and this time is inde-of experimental interest, the results of theorem 8 should hold
pendent olL". Now compare this to the restriction fo , of  also forM>1 and for ordinary disordered systems in any
the corresponding infinite volume™. After the timer, the  finite dimension.
only spins withinA |, that “notice” that they are subject to
periodic boundary conditions would be those within some
distance of order lasL’'—x) of the boundary. The others

reach the same state as in the infinite system, and so the X. GROUND STATES
overlaps agree in that region. ) ) )
This argument clearly will hold whel =1 in any model All of our preceding discussion has concerned metastable

where influence percolation does not occur, such as highly c¥tates, stable up tdl-spin flips. These are generated by a
strongly disordered models. In those systems, all the dynanflynamics with distributiorPy, , in which lattice animals up
ics is localized, as discussed in Sec. Ill B 2. Therefore, a$0 sizeM are rigidly flipped as described in Sec. Il. It is
L—oo, there will be somé. beyond which every spin ih’ natural to ask what happens if we lgt—o°; in particular,
will reach the same state as in the infinite system; that iscan a dynamics that allows rigid flips of lattice animals of
every influence cluster will be unable to distinguislynami- ~ unbounded size be constructed so as to generate infinite-
cally) whether it belongs to a finite or infinite system. Al- volume ground states? We will address that question in this
though the argument was presented in an informal way, thi§ection and see that the answehen formulated carefully
is sufficient to prove the result, stated formally as theorem 8is yes. However, unlike the case for finkg we cannot show
Theorem 8.For single-spin-flip dynamics in any model convergence to a final statand indeed, convergence may
where influence percolation does not occur, such as ordinarfyot be valid, as we discuss belpwand so cannot obtain
1D disordered chains, or both the highly and strongly disorfesults of the kind generated for metastable states. We will
dered models, the distributions of overlaps, enerdjies, also discuss several issues related to the connection between
and other global properties of metastable states in large finitground states antll-spin-flip stable states, in both finite and
volumes approaches the infinite-volume results as the volhfinite volumes.
umes tend to infinity. We therefore consider the “lattice animal dynamics” in-
While this argument is rigorous whev =1 for models troduced in Sec. Il, now with the lattice animal size un-
without influence percolation, it does not carry over easily tobounded. The rateR, were already chosen so that the dy-
M>1 (except in one dimension, where a modified influencenamics, as specified by clock ratésr equivalently, mean
percolation argument can be carried oot to ordinary dis- Waiting times for a given lattice animal to attempt to flip
ordered models in dimensions greater than one. Heuristensures that information does not propagate infinitely far in a
cally, though, the same result should apply there too. In ordefinite time and so there is a well-defined dynamisse Sec.
for it not to do so, it would have to be the case that the finall). The assumptions on ti's imply the following lemma,
energy density in finite volumes, for some specified boundWhich will be needed to prove the next theorem.
ary conditions, would béwer (by an amounnot tending to LemmaConsider a volumeé\| and a given lattice animal
zero with volume than that in the infinite system. But the A that is entirely insideA (i.e., no spins inA touch the
absence of boundary conditions in the infinite system meanBoundarydA ). Then at an arbitrarily chosen timte the
that, in any finite subvolume, the spin configuration can dy-{Probability p; that the clock ofA “rings” (i.e., it attempts to
namically adjust to the fixed coupling realization at theflip) before timet+1 and before the clock ainy other lat-
boundaries in order to attain the lowest possible energy; it i$ice animal touchingA, or JA , is strictly positive(inde-
difficult to see why the energy should be lower when thispendently oft or the spin configuration at timi.
option is not available due to the boundary condition being Proof. This follows immediately from the nature of the
rigidly imposed externally, and without regard to the cou-dynamics(whose distribution is denoted hereafter By)
plings. because of our assumptions on the ra&gseeded to make
But even if this were so, it would still be irrelevant to the the process well defined. In particular, if we denote the num-
state observed on any numerically or experimentally accesser of sites in a lattice anima\ by |A| and denote byr")
sible time scale. This is because, in the infinite-volume casehe (finite) sum of Ryg| over all lattice animal® that touch
the system relaxes to a final state within a finite subvolume\ or its boundary, then
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pl:(R‘A‘/R(L)) (1_e—R<L))_ (16) wh_ereM can t_)e arbitr_arily largébut fixed, and.ygt therg
exists only a single pair of ground states. Yet this is precisely
We now show that the dynamics defined By leads to a What happens in disordered 1D chains, and almost certainly
ground state, in the sense to be discussed below. as well in the 2D disordered ferromagnéRecent numerical
Theorem 9Consider the dynamics with distributidh,, ~ €vidence also points towards only a single pair of ground
and a finiteA | of arbitrary size. Then after a random time ~ States in the 2D spin glass as wgfB,79.) Caution should
(depending orL, J, ¢°, and dynamics realization.,), the  therefore be exercised whenever information on grotord
spin configuration inside\, forever remains in a ground pure states is used to extract information on metastable
state subject to its boundary conditiofshere the ground Statés, or vice-versa.
state and the boundary condition could themselves change
with time).
Prqof. We note fir;t that, as alwayéwith prob_apility D, Xl. CONCLUSIONS
any fixed lattice animal can undergo only finitely many
energy-lowering flips. This then implies that the following  We began in Sec. | B 1 with a list of ten questions about
event must have zero probability: there exists an infinite sebasic properties of metastable states in disordered systems,
guence of timed,,t,, ...—% such that at each of those providing brief answers in Sec. | B 2 followed by a detailed
times, the spin configuration inside the culkgiven its  study in subsequent sections. These questions and answers
boundary conditions at that timés not in a ground state aimed toward understanding fundamental features of the set
configuration. This is because, after any of those times, thef M-spin-flip stable states in spin glasses and disordered
above lemma implies that there is a positive probability inferromagnets, such as their numbers, basins of attraction, en-
the next unit of time that some lattice animal stricifgide  ergies, overlaps, remanent magnetizations, and relations to
the cube flips to lower the energy. The finitenesk ahplies  thermodynamic states.
a finite number of lattice animals insidg,_, so that if this From a broader perspective, we have presented a view-
event did not have zero probability, then, with positive prob-point for considering metastable states in spin glasses and
ability, some lattice animal inside the volume would flip in- random ferromagnets; its essence is that one can construct a
finitely many times. systematic approach toward their study, just as has been tra-
We emphasize a few points, most importantly, that thereditionally done for fundamental statistical mechanical ob-
is no claim that the dynamics converges to a specific groungects such as spin configurations or thermodynamic states.
statec” (though it might, depending on dimension and dis-We approach the problem of metastability as in those cases,
order distribution. The proof of convergence for finith by noting that one is often most interest@uth exceptions
(Ref. [55] and Sec. Il B abovefails here because now the as discussedn the typical states that appear in a physically
energy per spin of a lattice animal flip of sik& can go to  relevant ensemble for the particular problem under study. In
zero asM —. Of course, if convergence to a ground statethe case of spin configurations, this enemble is usually the
o can be shown for a particular model, this would imme-Gibbs state at a given temperature; in the case of thermody-
diately imply (cf. theorem 1 that there would be an uncount- namic states, we proposed in previous papérs75,7§ that
able number ofyround states, and their overlap distribution the appropriate ensemble is the metastate. In the current con-
function would be a5 function at the originsee also discus- text of metastable states, we propose a natural enseimble
sions in Refs[67,76)). It is therefore of interest to pursue the{o™(c® wy)}'s) that arises from zero-temperature “lat-
this question, but we will not do so here. tice animal” dynamics evolving from a spin configuration
A second point is that our dynamics “algorithm” finds generated through a deep quench; we call Migependent
ground states in the sense that any finite region surroundingieasure thé/-stable ensemble. To summarize, we propose
the origin will eventually always be in some ground state  the following comparison:
energy-lowering flips possible within the regjoafter some
time (depending on the various realizations as discussed i@bject Ensemble
theorem 9. It could still happen, though, that spins within
the region flip infinitely often(as they must if there ansot "
uncountably many ground states, as is expected, e.g., in tifgibbs state
2D random ferromagngtThese could occur either through a Metastable configuration
rigid flip of the entire region, or through changes in boundary

conditions due to flips of large lattice animals intersecting ) ) _
the region. We suggest that this dynamical approach provides both a

Finally, we note that this is a rare example of adynamicapatural ensemble and the corresponding tools for studying
process that can be proved to lead to a Gibbs dtatéhis ~ Metastable states.
case, a ground state at=0). While it is widely expected
that finite-temperature Glauber dynamics, and similar dy-
namics that satisfy detailed balance, lead to Gibbs states at
positive temperature, ds—«, we are unaware of any gen-
eral proof(for a discussion of relate@>0 results, see Sec. The work of C.M.N. was supported in part by the Na-
IV.5 of Ref.[59]). tional Science Foundation under Grant No. DMS 98-02310,

It may seem surprising that there can be an uncountabland the work of D.L.S. was supported in part by the National
number of states energetically stable to rigid flipdvbépins,  Science Foundation under Grant No. DMS 98-02153.

Gibbs ensemble
Metastate ensemble
M-stable ensemble

Spin configuration
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