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Metastable states in spin glasses and disordered ferromagnets
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We study analyticallyM-spin-flip stable states in disordered short-ranged Ising models~spin glasses and
ferromagnets! in all dimensions and for allM. Our approach is primarily dynamical, and is based on the
convergence ofs t, a zero-temperature dynamical process with flips of lattice animals up to sizeM and starting
from a deep quench, to a metastable limits`. The results~rigorous and nonrigorous, in infinite and finite
volumes! concern many aspects of metastable states: their numbers, basins of attraction, energy densities,
overlaps, remanent magnetizations, and relations to thermodynamic states. For example, we show that their
overlap distribution is ad function at zero. We also define a dynamics forM5`, which provides a potential
tool for investigating ground state structure.@S1063-651X~99!07111-1#

PACS number~s!: 05.50.1q, 75.10.Nr, 75.50.Lk, 64.60.My
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I. INTRODUCTION

A. Overview

Studies of spin glass dynamics often start from the
sumption that their anomalous, and still poorly understo
features arise from the presence of a large number of ‘‘m
stable’’ ~i.e., locally stable! states within the spin glass pha
~many reviews are available; see, for example, Refs.@1–3#!.
Although there exists plentiful~though mostly indirect! evi-
dence for the presence of many metastable states in
glasses, little hard knowledge of their properties has b
obtained. Most treatments of spin glass dynamics must th
fore rely on assumptions—that often differ widely—abo
their number, nature, and structure@4–16#. Questions regard
ing metastability~and the accompanying ‘‘broken ergodi
ity’’ @17#! are also important in the study of other disorder
systems, such as glasses@18,19#, and of certain neural net
work models@20–22#. Any information on spin glass meta
stable states, obtained from first principles and without
sumptions, would therefore be highly useful.~The reader
who wishes to cut to the chase is referred to Secs. I B 1
I B 2 below, where our results, providing such informatio
are summarized.!

Numerical simulations have provided much of the e
dence for the existence of metastability in spin glasses;
deed, the presence of metastability has often been an imp
ment to studies of equilibrium properties@23,24#, and has in
turn led to new numerical techniques such as simulated
nealing @25,26#. Experiments are frequently interprete
through the use of metastable states, and are used to t
extract information about them; early examples include
susceptibility, time-dependent magnetization, spin echo,
Mössbauer effect, and others@2#. More recent experiment
that may provide information on metastable states incl
measurements of noise in mesoscopic spin glasses@27# and
aging@4–16#. However, because assumptions about the n
ber and structure of metastable states must invariably
made, our general understanding of the role played by m
PRE 601063-651X/99/60~5!/5244~17!/$15.00
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stability in spin glass dynamics remains relatively primitiv
Because this understanding cannot be obtained thro

conventional statistical mechanical tools, few analytical
sults are available, and are usually confined to the cas
one-spin-flip ~energetically! stable states. In early work
Tanaka and Edwards@28#, Bray and Moore@29#, and De
Dominicis et al. @30# studied their number in the
Sherrington-Kirkpatrick ~SK! @31# ~or equivalently, the
Thouless-Anderson-Palmer~TAP! @32#! mean field spin
glass. They found that the number of one-spin-flip sta
states in a system ofN spins scaled as exp(0.1992N).
Nemoto@33# studied the same set of metastable states,
asserted both that their energy levels behaved as in a ran
energy model, and that the barrier energy between them i
increasing function of their Hamming distance. Vertechi a
Virasoro @34#, in both analytical and numerical work, an
confining their analysis to the lowest energy~metastable!
states, found results consistent with the hypothesis that
energy barriers between metastable states scale with
Hamming distance; they suggested that this correspond
might explain the mean field ultrametric organization
states. Other work has also been done on the distributio
barriers in the SK model@35#, as well as on metastable stat
in other mean-field models, including the infinite-rang
p-spin-interaction spin glass@36#, the sphericalp-spin model
@37#, the infinite-ranged Potts glass@38#, and related system
such as Kauffman’sN-k model @39#.

There exist few theoretical results on metastable state
short-ranged disordered systems in two or more dimensi
even though results on these would be important in interp
ing laboratory experiments. Rare analytical results have b
obtained on a one-dimensional spin chain with a continu
coupling distribution symmetric about zero@40–42#. It was
found that the number of one-spin-flip stable states increa
exponentially with the system size~in Ref. @40#, metastable
states of greater than single spin stability were also ex
ined!. Derrida and Gardner@42# further showed that there
existed a maximum magnetization above which there exis
5244 © 1999 The American Physical Society
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PRE 60 5245METASTABLE STATES IN SPIN GLASSES AND . . .
no metastable states. Bray and Moore@43# presented a rep
lica formalism for studying one-spin-flip stable states
finite-dimensional spin glasses; using this formalism, th
carried out a stability analysis about mean field theory, a
studied some of the properties of metastable states
higher energies. More recently, numerical studies@44# of the
two-dimensional6J spin glass seem to indicate that as s
tem size increases, the energy densities of the~one-spin-flip!
metastable states converge to a single value.

Summarizing, it appears that until now it has been di
cult to obtain hard analytical results on metastable state
short-ranged spin glasses in dimensions greater than
Aside from demonstrating that such states almost certa
exist in spin glasses and are important in determining th
physics, neither experimental nor numerical work to date
provide unambiguous and detailed information on th
structure. Both analytical and numerical analyses that
rectly address the properties of metastable states~as opposed
to inferring their properties indirectly! have mostly been con
fined either to mean-field or one-dimensional models, a
are usually limited to the study of one-spin-flip energetica
stable states.

In this paper we provide rigorous results on metasta
states that rely on no approximations or assumptions.
will analyze the properties of metastable states in disorde
spin systems~in particular, spin glasses and random ferr
magnets, both with continuous coupling distributions! in all
finite dimensions, and we will study states that are energ
cally stable@45# up to a flip of anyM spins, whereM,`
can be arbitrarily large. Both infinite volume and finite vo
ume systems will be addressed.

Before proceeding, we wish to add one cautionary no
Although we believe that the concept of metastable state
both interesting and useful in understanding spin glass~and
other! dynamics, we believe also that alternative~but not
necessarily orthogonal! formulations exist that have the po
tential to provide this understanding without direct invoc
tion of such states. These are fully real-space pictures, s
as droplet-scaling@46–48#, but possibly also others, that in
terpret nonequilibrium spin glass dynamics following
quench through the resulting domain structure@49,50#. Such
approaches have several advantages, in our opinion,
those invoking metastable states~especially over those tha
make no contact with real-space structure!. First, they require
fewer assumptions~most of which, however, remain neithe
verified nor disproved!, and those assumptions are typica
more accessible to numerical or analytical tests than th
regarding metastable states. Second, the idea that the sa
breaks up into domains, of whatever ultimate nature, follo
ing a deep quench is appealing and likely correct.

While the distinction between the thermodynamic pu
states and metastable states of a system remains impo
the overwhelming focus on metastable states~divorced from
real-space considerations! has led in part to the commo
viewpoint that pure state structure is irrelevant to dynam
because the system is believed to spend all its time i
single pure state. We have shown elsewhere@51# that this is
in generalnot correct, particularly for nonequilibrium dy
namics following a deep quench. The pure states are ind
relevant to dynamics, and at some level metastability
metastable states~at both zero and positive temperatur!
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should be related to a description based upon the pure
structure. We will not discuss such a relation further in th
paper, and will treat metastable states independently f
these considerations. If the above caveat is kept in m
then the study of metastable states can provide a useful~but
not orthogonal! complement to real-space approaches ba
on thermodynamic pure state structure.

B. Summary of results

Although most of our results will apply to many types
disordered systems, for specificity we consider the Ising s
Hamiltonian on thed-dimensional infinite cubic latticeZd,

H52(̂
xy&

Jxysxsy . ~1!

Here the sitesx are inZd, the spinssx561, and the sum is
over nearest neighbors. The couplingsJxy will be taken to be
independent, identically distributed random variab
~though occasionally we will examine other cases!; we re-
quire of their common distribution that it be continuous a
have finite mean~and, for some of our results, further re
quirements!. We denote byJ a particular realization of all
the couplings.

Both the spin glass and ferromagnetic cases will be c
sidered. In the first case, the couplings can take on ei
positive or negative values, typically~but not necessarily!
symmetrically distributed about zero; this is the Edward
Anderson Ising spin glass model@52#. In the second case, th
couplings take on only positive values. A Gaussian distrib
tion of couplings with zero mean is most commonly used
the spin glass case, while a uniform distribution of couplin
in the interval@0,J# typifies the random ferromagnet. Whil
our results are not restricted to these distributions, we w
use them often throughout the paper for clarity.

A one-spin-flip stable state is defined as an infini
volume spin configuration whose energy as given by Eq.~1!
cannot be lowered by the flip of any single spin. Similar
anM-spin-flip stable state (M,`) is an infinite-volume spin
configuration whose energy cannot be lowered by the flip
any subset of 1,2, . . . ,M spins. Finally, a ground state is a
infinite-volume spin configuration whose energy cannot
lowered by the flip ofany finite subset of spins.

All of the above definitions can be extended in a natu
way to finite-volume metastable states with specified bou
ary condition. For finite-volume ground states, however,
can use the alternative~and more natural! definition that it is
the spin configuration~or spin configuration pair, in the cas
of spin-flip-symmetric boundary conditions, such as free
periodic! that has the lowest energy given the specifi
boundary condition. It is easily seen both that the definit
given in the preceding paragraph is equivalent to this in fin
volumes, and that the second definition has no natural ex
sion to infinite volumes.

It has occasionally been noted that a definition of the
ergy ~or free energy! barrier confining a metastable state r
mains ambiguous at least until a specific dynamics is
fined. We note here that this problem does not exist for
definition of ~energetically! metastable states themselve
which can be defined solely through the use of a Hamilton
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5246 PRE 60C. M. NEWMAN AND D. L. STEIN
such as Eq.~1!. Nevertheless, the essential approach of t
paper will be to study the metastable states by using dyn
ics to obtain a natural ensemble of these states.

1. Questions

Given these definitions, we can now ask for informati
about the metastable states of disordered systems suc
spin glasses. We will not attempt to be precise here,
some concepts~e.g., basin of attraction! remain to be de-
fined. This section and Sec. I B 2 are intended only to se
as an overview of our main results, and as a reference p
when reading later sections of the paper. The most b
questions about metastability include the following.

~1! At the most basic level, can the existence of me
stable states be proved? If yes, how many one-spin-flip, t
spin-flip, . . . metastable states exist ind dimensions? Does
the number ofM-spin-flip stable states vary withM or d? If
this number is infinite for someM and/ord, is it a countable
or uncountable infinity?

~2! Given an initial spin configurations0 ~following a
deep quench! and a specified zero-temperature dynam
~such as ordinary Glauber dynamics!, doess t, at time t,
evolve toward a single final metastable states` ~i.e., do the
dynamics converge!? If so, how much of the initial informa-
tion contained in the starting spin configuration is contain
in the final state, and how much varies with the particu
realization of the dynamics~nature vs nurture!?

~3! How large are the basins of attraction of the me
stable states?

~4! What is the distribution of energy densities of th
metastable states?

~5! What is the metastable state structure in configura
space? For example, does there exist any nontrivial ove
distribution, in finite or infinite volume? Is there any scalin
of the barrier height~defined in some suitable or reasonab
way! between one- or higher-spin-flip stable states with th
Hamming distance, as has sometimes been claimed?

~6! Does the number and structure of the various types
metastable states differ for those that arise dynamically fr
two independent starting configurations, as opposed to th
that evolve from the same initial configuration?@This is
somewhat different from the questions asked in~2!, though
not orthogonal.#

~7! What does~1! imply about how the number of meta
stable states scales with volume in finite samples? Do
answers to~2!–~6! change for~large! finite volumes?

~8! What is the remanent magnetization ind-dimensional
spin glasses when the initial spin configuration is uniform
11?

~9! Is there any correspondence between pure and m
stable states? More precisely, is the spin configuration co
sponding to a typical metastable state in the domain of
traction of a single pure state~at positive temperature
assuming multiple pure states! or ground state~at zero tem-
perature!?

~10! Do the answers to these questions about metast
states provide any interesting thermodynamic informati
such as the structure of ground states at zero temperatu
pure states at positive temperature?
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2. Main results

In this subsection we present ‘‘short’’ answers to t
above questions, without discussion or elaboration. A fu
discussion, without which these answers should be rega
as sketchy and incomplete, will be provided in later sectio

The numbers refer to the corresponding questions fr
Sec. I B 1. The section of the paper in which the claim ma
below is proved and/or discussed is also given.

~1! In an infinite system, the Hamiltonian equation~1!
displaysuncountablymany M-spin-flip stable states, for al
finite M>1 and for all finited>1 ~Sec. IV!.

~2! For almost everyJ, s0, and dynamics realizationv
~to be defined in Sec. II! @53#, a final states`, depending on
the particular dynamics, exists. Put another way, every s
flips only finitely many times~Sec. III!. ~This result is not
obvious and indeed is not the case for other systems, suc
homogeneous ferromagnets onZd—at least for lowd; see,
e.g., Refs.@51,54,55#.! In the usual one-spin-flip Glauber dy
namics in one dimension, precisely half the spins ins` are
completely determined bys0, with the other half completely
undetermined bys0. For higherd and the same dynamics,
can be shown that a dynamical order parameterqD , measur-
ing the percentage dependence ofs` on s0, is strictly be-
tween 0 and 1~Sec. VI A!. ~All results hold for almost every
J, s0, andv.!

~3! The basins of attraction of the individual metastab
states are of negligible size. That is, almost every initial c
figurations0 is on a boundary between~two or more! meta-
stable states~Sec. VII!. Equivalently, the union of the do
mains of attraction ofall of the metastable states forms a s
of measure zero~in the space of alls0’s!. ~A similar result
for pure states was proved in Ref.@51#.!

~4! For anyk, almost everyk-spin-flip stable state has th
same energy density,Ek . Moreover, the dynamics can b
chosen so thatE1.E2.E3.••• , and furthermoreEk for
any finite k is larger than the ground state energy dens
which of course is the limit ofEk ask→` ~Sec. V!.

~5! Almost every pair of metastable states~either two
k-spin-flip stable states or onek- and onek8-spin-flip stable
state! has zero spin overlap. This conclusion does not cha
when one restricts attention to any~positive measure! subset
of metastable states~Sec. IV!.

~6! For two metastable states arising from two indepe
dently chosen starting configurationss0 and s80, the an-
swers given above hold. For almost any pair of metasta
states arising from thesames0, the answers in~1!, ~3!, and
~4! still hold, but the answer to~5! is modified: it remains
true that almost every pair has thesameoverlap, but the
overlap is now positive, and equal to the quantityqD ~Sec.
VIII !.

~7! The number of metastable states in finite samp
scales~for sufficiently large volumes! exponentially with the
volume in generald for states of any stability. It is alread
known that the number of one-spin-flip stable states in
one-dimensional chain of lengthL increases as 2L/3 @40,42#.
Exact results can be obtained in higher dimensions for so
other models. In~large! finite volumes, the answers to~2!
and~4!–~6! still hold ~but there will be some smearing of th
d functions due to finite-volume effects!. For ~3!, the size of
the basins of attraction of the metastable states falls to z
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PRE 60 5247METASTABLE STATES IN SPIN GLASSES AND . . .
as volume increases~Sec. IX!.
~8! The remanent magnetization in one dimension

known to be 1/3@56#. In higher dimensions, a heuristic ca
culation suggests a lower bound on the remanent magne
tion that for larged behaves likee22d ln(d) ~for a Gaussian
spin glass!. Exact results can be obtained in alld for some
other models, to be discussed in Sec. VI.

~9! At zero temperature, almost no metastable state sh
be ‘‘contained’’ within a single ground state. If more tha
one pure state exists at some positive temperature, the
most no metastable state should be contained within a si
pure state. That is, almost every metastable state shoul
on a ‘‘boundary’’ in configuration space between multip
pure or ground states~Sec. VII!.

~10! Information on metastable states so far does not s
to provide information on infinite-volume pure or groun
states. That is, we will see that one can have a situation@the
two-dimensional~2D! disordered ferromagnet# where there
exists an uncountable number of~infinite-volume! M-spin-
flip stable states forM arbitrarily large, but in which there
exists only a single pair of pure states at low temperat
~Sec. X!. In situations of this kind, the presence of ma
metastable states could conceivably lead to difficulties in
terpreting numerical studies of equilibrium properties, su
as the number of pure~or ground! states.

The claims made in~1!–~6! will be proven rigorously. For
~7!, the claim of exponential scaling of the number of sta
will be proven rigorously; the claim concerning overlaps
finite volumes will be proven rigorously whenM51 for a
class of disordered systems thermodynamically equivalen
ordinary spin glasses and random ferromagnets. This re
should hold also forM.1 and for ordinary spin glasses an
random ferromagnets; for these, heuristic arguments wil
presented. The claims of~8! include rigorous exact result
for certain models and heuristic lower bounds for other d
ordered systems. The claims of~9! are motivated by~3!, but
have not yet been formulated in a rigorous way. The claim
~10! is based on a conjecture that is widely believed but t
remains to be proven rigorously.

3. Outline of rest of paper

In Sec. II, we present the dynamical processes to be c
sidered. The single-spin dynamics is simply the ze
temperature limit of the usual Glauber dynamics, but we a
present a multi-spin-flip dynamics. Section III presents ar
ments showing convergence of the dynamics to final state
several contexts: both finite- and infinite-volume ordina
spin glasses and random ferromagnets~hereafter referred to
simply as ordinary disordered models! in any dimension, for
strongly and highly disordered models, and finally for cert
types of homogeneous systems. In Sec. IV, we prove tha
number ofM-spin-flip stable states is uncountably infinite f
ordinary disordered models, in any dimension and for anyM,
and that the spin overlap distribution is ad function at zero.
There we also discuss implications for arguments that ba
ers between metastable states scale with their Hamming
tance. In Sec. V we show that the energy densities of
M-spin-flip stable states~except for a set of measure zer!
are the same, and show that a natural choice of dynam
leads to lower energy densities for states of higher stabi
s
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There we also present a cautionary discussion about ho
interpret and use these and related conclusions.

We then present, in Sec. VI, a calculation of the ‘‘rem
nent overlap’’~and for spin glasses, remanent magnetizati
which is a special case! for highly disordered models, an
also provide a~nonrigorous! lower bound of this quantity for
ordinary disordered models in general dimensions. In
same section we also compute the dynamical order param
qD for ordinary disordered models in one dimension a
highly disordered models in general dimensions. In Sec. V
we show that the basins of attraction of almost every me
stable state have measure zero, and remark that no m
stable states~as always, aside from a set of measure ze!
should themselves lie completely in the basin of attraction
any ground~or at positive temperature, pure! state. In Sec.
VIII we show that the spin overlap distribution for two met
stable states dynamically evolved from thesame~random!
starting configuration isqD , almost surely. In Sec. IX we
re-examine many of the above results for finite-volume d
ordered systems, and show that their qualitative features
sist in large finite volumes, and that quantitative agreem
with the infinite-volume results is increasingly better as t
volume increases. In Sec. X, we present a dynamics
generates infinite-volumegroundstates, and discuss their re
lation with metastable states. Finally, in Sec. XI, we pres
our conclusions.

II. DYNAMICS

Theoretical studies of metastable states usually look
rectly for one-spin-flip stable configurations for the Ham
tonian ~as in, e.g., Refs.@40–42#! or for one-spin-flip stable
solutions of self-consistent equations for the magnetiza
~as in, e.g., Ref.@29#!. Here we propose instead adynamical
approach, in which the time evolution of the system is e
ploited as a theoretical tool in determining the answers to
questions posed in Sec. I B. We start by describing the
namics that will be used.

We begin by considering the standard zero-tempera
Glauber single-spin-flip dynamics. In every dynamical pr
cess considered in this paper, the coupling realizationJ is
taken to be fixed. We denote bys0 the initial ~time zero!
infinite-volume spin configuration onZd. The starting state
s0 is chosen from the~infinite-temperature! ensemble in
which each spin is equally likely to be11 or 21, indepen-
dently of the others. The spin configuration is updated as
chronously, in that a single spin at a time is chosen at r
dom, and then always flips if the resulting configuration h
lower energy and never flips if the resulting configurati
has higher energy.~Because the coupling distribution is con
tinuous, there is no possibility of a flip costing zero energ
In models where zero-energy flips can occur, as in unifo
ferromagnets@51,54,55# or 6J spin glasses@57#, the stan-
dard rule is that the chosen spin then flips with probabi
1/2.!

The notion of choosing a spin ‘‘at random’’ needs cla
fication for an infinite-volume system. More precisely, t
~continuous time! dynamics is given by independent~rate 1!
Poisson processes at eachx corresponding to those timest at
which the spin atx looks at its neighbors and determine
whether to flip. We denote byv1 a given realization of this
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5248 PRE 60C. M. NEWMAN AND D. L. STEIN
zero-temperature single-spin flip dynamics; so a given r
ization v1 would then consist of a collection of rando
timestx,i (xPZd,i 51,2, . . . ) ateveryx when spin flips for
the spinsx are considered.

Given Hamiltonian~1! and a specificJ, s0, andv1, a
system will evolve toward a single well-defined spin co
figurations t at timet. It is important to note that these thre
realizations~coupling, initial spin, and dynamics! are chosen
independently of one another. The continuous coupling
tribution and zero-temperature dynamics together guara
that the energy per spinE(t) is always a monotonically de
creasing function of time.

The above dynamics is commonly used in a variety
problems. We now introduce a dynamics that emplo
multiple-spin flips. Consider a dynamics in which rigid flip
of all lattice animals~i.e., finite connected subsets ofZd, not
necessarily containing the origin! up to sizeM spins can
occur. One could restrict flips to only simply connected l
tice animals~i.e., no holes!, but we will not do so. The cas
M51 is the single-spin flip case just described;M52 cor-
responds to the case where both single-spin flips and r
flips of all nearest-neighbor pairs of spins are allowed; a
the case of generalM corresponds to flips of one-spin, two
spin, three-spin,. . . ,M -spin connected clusters. A specifi
realization of thisM-spin-flip dynamics will be denotedvM .

The probability measurePM from which a dynamical re-
alization vM is taken must be chosen so that the result
dynamics is sensible, i.e., so that the dynamics leads
single, well-defineds t for almost everyJ, s0, and vM .
Furthermore, we wish the dynamics to remain sensible e
in the limit M→`. An initial requirement onPM is that the
probability that any fixed spin considers a flip in a unit tim
interval remains of order 1, uniformly inM. Such a choice
would guarantee, for example, that the probability inPM that
a spin considers a flip in a time intervalDt vanishes asDt
→0, uniformly inM. A further requirement for the dynamic
to be well-defined is that information not propagate ar
trarily fast throughout the lattice asM becomes arbitrarily
large.

We therefore construct our dynamics as follows:PM for
M fixed assigns all simply connected lattice animals of sizk
~i.e., containingk spins! a dynamics chosen from a Poisso
process as in the single-spin-flip case, but with rateRk.0
depending onk, for k51,2, . . . ,M . We take, as before,R1
51, and in general will require thatRk11,Rk for all k. As
always, the dynamical process governing the flipping of a
lattice animal is independent of that for all others.

It is not hard to show that for any spin to flip at a rate
order 1, independent ofM in the multi-spin-flip dynamics, it
is enough to require that(k51

` hkRk,`, where hk is the
number of lattice animals of sizek that contain the origin.
This number scales exponentially ink, with the constant in
the exponential~generally not known for mostd) dependent
on the lattice type and dimensionality@58#. We therefore
define our dynamics so thatRk;exp@2a(d)k#, wherea(d)
.0 depends only on dimension. In order that informati
not propagate infinitely fast even afterM→`, we choose
a(d) large enough so thathkRk still decays exponentially
fast ask→` ~see also theorem 3.9 in Chapter I of Ref.@59#!.
There might exist slower falloffs ofRk with k that would also
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give a reasonable dynamics, but our purpose here is onl
point out that such dynamics do exist.

We emphasize that we are not proposing this multi-sp
flip dynamics in order to model dynamical processes in
tual spin glasses~although it could conceivably be useful fo
that purpose!. Its intended use is rather as a theoretical too
help elucidate the structure of metastable states. We
proceed to show how this may be done.

III. CONVERGENCE OF THE DYNAMICS

In this section, we study the question of convergence
s t to a final~metastable! states`. As always, we consider a
disordered Ising spin system with energy given by Eq.~1!,
whose coupling realizationJ is fixed throughout the dynami
cal process. Unless otherwise specified,J will be chosen
from a continuous coupling distribution with finite mean~but
other distributions will also be briefly discussed!. The initial
spin configuration s0 is chosen from the ~infinite-
temperature! distribution described at the beginning of Se
II. Strictly speaking, the dynamical process corresponds
that following an instantaneous quench from infinite to ze
temperature. Physically, such a process is often used
model the behavior of systems following a deep quench fr
high to low temperature.

We will consider the system’s evolution to a final state
both the finite- and infinite-volume cases. The question
convergence is not so obvious in the infinite-volume ca
but is rather easy in the finite-volume case, so we will be
there.

A. Finite volumes

We will denote byLL,Zd the Ld cube centered at the
origin, and byuLLu the number of sites inLL . Given some
specified boundary condition~periodic, fixed, free, etc.! on
]LL , the boundary ofLL , there is a unique~with respect to
spin configurations, modulo a global spin flip if the bounda
condition is spin symmetric! minimum Emin

(L) over all spin
configurations of the energy withinLL . The uniqueness, fo
almost everyJ, is a consequence of the coupling distributio
being continuous. Similarly, for almost everyJ there will be
a minimum energy changeDmin

(L) .0 over all possible flips~of
lattice animals strictly contained inLL up to size M
,uLLu) in all of the 2uLLu spin configurations inLL . The
actual value ofDmin

(L) will depend onJ, the boundary condi-
tion, and the choice of dynamics, i.e., the value ofM in PM .
The energyE(L)(0) at time 0 is finite, so the total number o
spin flips is bounded from above by (E(L)(0)2Emin

(L) )/Dmin
(L) . It

follows that the spin configuration converges, after a fin
number of spin flips in finite time, to some limitings (L)

`

~depending ons (L)
0 andvM). We now turn to the more in-

teresting case of dynamical convergence to a limiting s
configuration in infinite volumes.

B. Infinite volumes

1. ‘‘Ordinary’’ spin glasses and random ferromagnets

Given Hamiltonian~1! and a continuous coupling distri
bution with finite mean, it was proved in Ref.@55# for M
51 that every spin flips only finitely many times for almo
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everyJ, s0, andv1. This was implied by a more genera
result that even if the coupling distribution is not continuo
~in almost every realization!, there can be only finitely many
energy-decreasing flips~as opposed to zero-energy flips! of
any spin. Given both the dynamics and the continuity of
coupling distribution, every spin flip strictly decreases t
energy, and the implication follows. We now sketch t
proof given in Ref.@55#, modified very slightly to incorpo-
rate the more generalM-spin-flip dynamics; we refer the
reader to Ref.@55# for technical details.

We denote bysx
t the value of the spin atx for fixed

J, s0, andvM . Define

E~ t !52~1/2! (
y: zux2yuz51

Jxysx
t sy

t , ~2!

where the overbar indicates an average over (J,s0,vM) and
zux2yuz denotes Euclidean distance. By translatio
ergodicity of the distributions from whichJ, s0, and vM
are chosen, and using the assumption that the distributio
J has finite mean, it follows thatE(t) exists, is independen
of x, and equals the energy density~i.e., the spatial averag
energy per site! at time t in almost every realization o
J, s0, andv.

Clearly E(0)50 ~because of the spin-flip symmetry o
the distribution ofs0) andE(`)>2duJxyu. We now choose
any fixed numbere.0, and letNx

e be the number of flips
~over all time! of the spin atx ~i.e., of lattice animals con-
taining x) that lower the total energy by an amounte or
greater. Because2duJxyu<E(`)<2(e/M )Nx

e, it follows
~for almost everyJ, s0, and vM) that, for everyx and
everye.0, Nx

e is finite. Then ifex is the minimum possible
magnitude of the energy change resulting from a flip o
lattice animal containingx, we need only show thatex.0 for
every x. The value ofex of course varies withx and will
depend on bothJ and the value ofM in the dynamics mea
surePM . Let D (k,x) be the magnitude of the minimum en
ergy change, in all spin configurations, over flips of all latti
animals of sizek containingx; clearly D (k,x).0. Thenex
5min1<k<MD(k,x).0 becauseM,`.

We have therefore proved for anyM,` the existence of
a limiting states` for almost everyJ, s0, and vM . The
final states` of course depends on all three realizations, a
will be anM-spin-flip stable state. Before exploring the co
sequences of this result, we turn briefly to a discussion
some other systems.

2. Strongly and highly disordered models

There is a class of ‘‘strongly disordered’’ coupling distr
butions, where the mechanism for convergence ofsingle-
spin-flip dynamics is more localized@55# than the one given
just above. This class includes distributions with infin
mean as well as ones with finite mean~although we retain
the requirement that the coupling distribution be continuou!.
These are coupling distributions such that ‘‘influence per
lation’’ @60# does not occur onZd; we note that this require
ment yields ad-dependent class of distributions. The reas
for convergence of dynamics is different in these cases,
a new approach based on the idea of influence percolatio
needed. To discuss this we first describe the notion of in
ence.
e

-

of

a

d

f

-

n
nd
is
-

We say that the spin aty can influence the spin atx
~where zux2yuz51) if changing sy can alter whether the
energy change resulting from a flip ofx is less than~or equal
to, or greater than! zero in some spin configuration. So, fo
example, if the couplingJxy50 thany cannot influencex,
and vice versa.~This possibility, and also that of zero energ
changes, is excluded here, however, because we assum
the coupling distribution is continuous.! If JxyÞ0, then the
~necessary and sufficient! condition thaty can influencex is
@60#

uJxyu>U (
z: zux2zuz51,zÞy

sz8JxzU ~3!

for some choice of thesz8’s ~in $21,11%). Because condi-
tion ~3! cares only about the coupling magnitudes and not
signs, the discussion applies equally well to spin glasses
random ferromagnets.

We now consider the graph consisting of all sites inZd

but only those bonds$x,y% such that eitherx can influencey
or y can influencex or both. The properties of this grap
~called theinfluence graphin Ref. @60#! that are valid for
almost allJ will depend on bothd and the coupling distri-
bution. If there is no percolation of the influence graph~i.e.,
if given someJ, all the clusters of the influence graph a
finite! and there is no possibility of zero energy flips, th
every spinsx can flip at most finitely many times~for every
s0 and for almost everyv1). This is because the dynamics
effectively localized: the dynamics onZd of the infinite-
volume spin configuration breaks up into dynamics on d
connected finite regions. The result then follows~as in the
analysis above of finite-volume dynamics!. If influence per-
colationdoesoccur, then no conclusions can be drawn~with-
out further information! on whether spins can flip infinitely
often. We note that ford51, any continuous coupling dis
tribution will result in influence nonpercolation.

An example of a system where influence nonpercolat
occurs~and so the dynamics converges! is the ‘‘highly dis-
ordered’’ model of Refs.@61–63#. Here the couplings are
volume dependent and ‘‘stretched out,’’ so that in large fin
volumes, the magnitude of any coupling is at least twice t
of the next smaller one and no more than half that of the n
larger one. However, influence nonpercolation can also oc
in less extreme situations, in particular the class of mod
we call ‘‘strongly disordered.’’ Roughly speaking, these a
models in which the above condition on the stretching of
couplings typically holds up to some maximum size volum
~which still needs to be sufficiently large!, but not for arbi-
trarily large volumes. For a more detailed description, s
Ref. @55#.

3. Other systems

It is not difficult to see that the proof outlined in Se
III B 1 allows for a restatement of the dynamics convergen
theorem as follows: givenM-spin-flip zero-temperature dy
namics in an infinite spin system where the energy per sit
bounded, and the initial spin configuration is chosen from
spatially ergodic measure, there can~with probability 1! be
only finitely many flips that cause anonzeroenergy change.
We can therefore apply this result not only to disorder
systems with noncontinuous coupling distributions, but a
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5250 PRE 60C. M. NEWMAN AND D. L. STEIN
to homogeneous systems such as uniform ferromagne
antiferromagnets. Here the theorem implies that the ques
of convergence is lattice dependent. For example, every
flip will be energy lowering in a uniform ferromagnet on
hexagonal~honeycomb! lattice in two dimensions, so her
too the dynamics will almost always converge from a ra
dom initial spin configuration@54#.

What about uniform ferromagnets on square lattic
Here we have proved@51,55# that the opposite is true: fo
almost everys0 andv1 ~the result easily extends to mult
spin-flip dynamics, but we will not do so here!, there is no
convergence of the dynamics because every spin flipsinfi-
nitely many times. It must remain true that every spin und
goes only finitely many energy-lowering flips, so therefo
every spin must undergo infinitely manyzero-energy flips. A
more global viewpoint@51# is that there exists no finite tim
after which the spins within some fixed, finite region rema
in a single phase; that is, domain walls forever sweep ac
the region. We do not yet know what happens in unifo
ferromagnets onZd in dimensions higher than two, althoug
numerical simulations@64# indicate the possibility of dy-
namical convergence in five and higher dimensions.

Finally, we briefly discuss the6J spin glass~and related
models!. In two dimensions, we can show@57# that this is an
intermediate case:~for almost everys0 and v1) a positive
fraction of spins flip infinitely many times and a positiv
fraction flip only finitely many times. Similar behavior oc
curs in spin glasses or random ferromagnets with other n
continuous distributions~e.g., the couplings can take on on
two or a finite number of values, and the distribution ne
not be symmetric about zero!. In all of these, a limiting state
s` does not exist@65#. For noncontinuous distributions othe
than 6J models, these conclusions remain valid for alld
>2 ~whether that is so for6J models is unclear!.

A discussion of these systems was included only for co
parison purposes; our primary interest in this paper will be
ordinary spin glasses and random ferromagnets with cont
ous coupling distributions. We now examine the con
quences of the results from this section.

IV. NUMBERS AND OVERLAPS
OF METASTABLE STATES

In Sec. III we established that ourM-spin-flip dynamics
converges to a final states` for almost everyJ, s0, and
vM . We will hereafter denote bysM

` the final state reache
in this way. By the definition of the measurePM from which
the dynamical realizationsvM are chosen, it immediately
follows thatsM

` is anM-spin-flip stable state~for J), which
is also a function ofs0 andvM .

It will be convenient to use a shorthand notation, whe
~for fixed J! sM

` denotessM
` (s0,vM) and sM8

8` denotes
sM8

` (s80,vM8
8 ), where s80 and vM8

8 are chosen indepen
dently of s0 and vM . When M 85M , sM

` and sM8
` repre-

sent a pair of replicas. We define the overlapQM ,M8 of sM
`

andsM8
8` in the usual way:

QM ,M85Q~J,s0,vM ,s80,vM8
8 !

5 lim
L→`

uLLu21 (
xPLL

sM ,x
` sM8,x

8` , ~4!
or
on
in
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wheresM ,x
` is the value of the spinsx in the metastable stat

sM
` and sM8,x

8` is the value of sx in sM8
8` . When M 8

5M , QM ,M is the overlap of the replicassM
` andsM8

` . We
now show, in the following theorem, that for any finiteM
there is an uncountable infinity ofsM

` ’s @66#, and that almost
every pair sM

` , sM8
` ~as s0,vM ,s80,vM8

8 vary indepen-
dently! has overlap zero.

Theorem 1.In a disordered spin system with Hamiltonia
~1!, for almost every fixedJ chosen from a continuous cou
pling distribution with finite mean, there is an uncountab
infinity of M-spin-flip-stable states for anyM @66#. Further-
more, for anyM andM 8, almost every pair has overlap zer
i.e. ~for almost everyJ ), the infinite-volume overlap distri-
bution of QM ,M8 is a singled function at zero.

Proof. We first show that almost every pair of metastab
states (sM

` ,sM8
8` ), has zero overlap, and then, by takingM 8

5M , show how this implies an uncountable infinity of met
stable states. For a fixed~finite! M and almost everyJ, we
showed in Sec. III that for almost everys0 and vM the
dynamics converge to a limiting metastable sta
sM

` (s0,vM). Consider two such final statessM
` andsM8

8` , as
defined above. Clearly their overlapQM ,M8 is a measurable
translation-invariant function of its five arguments. Mor
over, because each of the five distributions from wh
J, s0, vM , s80 and vM8

8 are chosen has the property
translation-ergodicity~see Ref.@67# for a discussion of this
property and its use!, it follows that the same property hold
for the joint ~product! distribution of (J,s0,vM ,s80,vM8

8 ).
The translation invariance of the random variableQ @which
is immediate from the right-hand side of Eq.~4!# then im-
plies that it must be constant for almost every realization
(J,s0,vM ,s80,vM8

8 ). Let us suppose that this consta

value q̃ is nonzero. By the spin-inversion symmetry
Hamiltonian~1!, we must have

q̃5Q~J,s0,vM ,s80,vM8
8 !

52Q~J,s0,vM ,2s80,vM8
8 !52q̃ ~5!

for almost every realization. In the last step we used the
that 2s80 can be replaced bys80 becauseQ is constant
almost surely~and the distribution ofs80 is spin inversion
symmetric!. It follows from Eq. ~5! that q̃50.

Now takeM 85M , and suppose that there were a cou
able number~including the possibility of a countable infin
ity! of M-spin-flip-stable states. This would imply that, wit
positive probability, two independently chosen starting co
figurations and dynamics would result in the same final st
which would have a self-overlap of11, so thatQM ,M would
have ad function component at11 with nonzero weight. It
follows that, for any finiteM, there must be anuncountable
infinity of such states.

Remark.A crucial step in the proof is the existence of
limiting final state, i.e., almost sure convergence of the
namics. It is the absence of this knowledge that prevents
from reaching similar conclusions about ground states~Sec.
X! or pure states at positive temperature@51# if broken spin-
flip symmetry should exist.~We note also that in other re
spects, the method used in this proof is similar to that use



th
o

rg
in

ll
bl

he
is
rr
o
s
c
re

o
rie
t
re
be

ed
be

fi
te
th
r-
sy
an
m

te
d
n

er
on
ba

a
in
ab
a
ti

lin
e

rin

ili

fo

e
i-

ble
uc-

en-

on-
-

ergy
st

of

f the
s
s re-

it-

n-

b-
h

in-
of

.
l

trum
s for

ost
one

in
one
to

ei-
ndi-

se
ce
the
sfy-
ne

ble
ies

ust
the
ner-
ose
pin-

PRE 60 5251METASTABLE STATES IN SPIN GLASSES AND . . .
the proof of theorem 2 of Ref.@51#.! It follows that the con-
clusion of theorem 1 holds also in other models where
dynamics converge, such as the highly and strongly dis
dered models discussed in Sec. II~but in these models the
conclusions can also be obtained by more concrete a
ments based on the localization of the dynamics due to
fluence nonpercolation, as discussed above!.

The conclusion of theorem 1~with M 85M ) holds for a
general pair ofM-spin-flip stable states. In Sec. VIII, we wi
discuss how this conclusion is modified for two metasta
states dynamically evolved from asingleinitial spin configu-
ration. We now discuss some of the consequences of t
rem 1, particularly for the proposal that the Hamming d
tance between metastable states scales with their ba
height, and that this might lead to a possible ultrametric
ganization of metastable states in realistic spin glas
@7,15,16#. A possible relation of this kind has been conje
tured @33,34# to lead to an ultrametric organization of pu
states in state space@68# in the SK model.

An analysis of this conjecture is hampered by the lack
a clear understanding of how to define the energy bar
between two metastable states, in the natural contex
single-spin-flip Glauber dynamics at positive temperatu
However, possible progress on these questions has
made in the mean-field case. Previous studies@29,69# have
indicated there that a critical energyEc exists above which
the ~one-spin-flip-stable! metastable states are uncorrelat
and have zero overlap, and below which correlations
tween barriers and Hamming distances are expected
emerge. So it is reasonable to expect that one should con
one’s attention to energetically low-lying metastable sta
@34# ~see also the discussion on proper weighting of
states in Ref.@33#!. It is also clear from general conside
ations that, because the distance between two states is
metric between them but their relative barriers are not,
analysis should be confined to states with roughly the sa
energy~or energy density, in the infinite volume case! @34#.

Because we will show in Sec. V that~for a givenM and
choice of dynamical process! almost every metastable sta
has the same energy per spin, the above issues are alrea
part addressed. But the more crucial point is that in a
subsetwith nonzero measureof the set of all metastable
states, the same conclusion will hold; that is, almost ev
pair chosen from this subset will have zero overlap. We c
clude that for realistic spin glasses, and supposing that
riers between states can be defined in some natural w
there should be no general scaling of barriers with Hamm
distance. This is because almost every pair of metast
states will have zero overlap, and either almost every p
also has the same energy barrier or else there’s a distribu
of such barriers. In either case, there is no nontrivial sca
of barriers with Hamming distance between states. Furth
more, this conclusion remains the same when conside
metastable states of differentM andM 8. It should be noted,
however, that these arguments do not rule out the possib
of some kind of scaling between pairs of states ofzero
probability—but such pairs are of negligible significance
deep quench dynamics@70#. It might be thought that this
conclusion may not apply to finite volumes; however, w
will argue in Sec. IX that the overlap distribution approx
mates ad function at the origin for large finite volumes.
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V. ENERGIES OF METASTABLE STATES

We now turn to a discussion of energies of the metasta
states. Our first result is to show that our dynamical constr
tion yields a probability measure on theM-spin-flip stable
configurations such that almost every one has the same
ergy density~i.e., energy per site!.

Theorem 2.For any dynamical measurePM ~defined as in
Sec. II!, almost everysM

` has the same energy densityEM ,
which is also independent of the coupling realizationJ.

Proof. Because the energy density of any metastable c
figuration sM

` (J,s0,vM) is a measurable, translation
invariant function ofJ, s0, and vM , it immediately fol-
lows by the same argument used in theorem 1 that the en
density of theM-spin-flip stable states is the same for almo
everyJ,s0, andvM .

The result of theorem 2 is consistent with the findings
the numerical investigation of@44# of the 2D6J spin glass,
where the data indicated convergence to a single value o
energy densities of the~one-spin-flip! metastable states a
system size increased. Although theorem 2, as stated, i
stricted to systems where the dynamics converge to a lim
ing s`, which is not the case for the6J spin glass in two
dimensions@57#, the same arguments imply much more ge
erally convergence to asingle limiting energy density.

Even though our dynamical construction yields a pro
ability measure on theM-spin-flip stable configurations suc
that almost every one has the same energy density, it is
correct to conclude that there does not exist a spectrum
energy densities amongall M-spin-flip stable configurations
For any d and for most models there will be a nontrivia
spectrum in the sense to be described below; this spec
can even be calculated in special circumstances, such a
the one-spin-flip stable states in one dimension@41#. ~Simi-
larly, although the magnetization per spin is zero for alm
every metastable state, a spectrum of magnetizations in
dimension was computed in Ref.@42#. We will return to this
topic in Sec. VI.!

To clarify this issue, consider one-spin-flip stable states
a continuously disordered spin glass or ferromagnet in
dimension. The infinite spin chain can be broken up in
‘‘influence clusters,’’ as described in Refs.@54,55# ~see also
Sec. III B 2!; these are the finite spin chains bounded to
ther side by couplings whose magnitudes satisfy the co
tion

uJn,n11u,min$uJn21,nu,uJn11,n12u%, ~6!

where the integern denotes a site along the chain. Becau
there is no frustration, every coupling within every influen
cluster is satisfied in every one-spin-flip stable state, and
couplings between the influence clusters—i.e., those sati
ing Eq.~6!—can be arbitrarily satisfied or unsatisfied. So o
can, for example, take any percentagep of these ‘‘weak’’
bonds to be satisfied and still have a one-spin-flip sta
configuration, resulting in a spectrum of energy densit
among the set of all one-spin-flip stable states asp is varied.

This example illustrates the important point that one m
be careful in specifying what measure is imposed on
metastable states before discussing the distributions of e
gies, magnetizations, and other physical quantities over th
states. In the 1D example under discussion, each one-s
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5252 PRE 60C. M. NEWMAN AND D. L. STEIN
flip stable state for a givenJ is specified~modulo a global
spin flip! by an infinite sequence of coin tosses—one
each weak bond. Here an outcome of ‘‘heads’’ on a parti
lar toss implies that the corresponding weak bond is satisfi
and ‘‘tails’’ implies that it is unsatisfied. The probabilit
measure on the set ofs1

`(J,v1 ,s0)’s imposed by the dy-
namics and initial condition~for fixed J ) corresponds to
independent tosses of an unbiased coin, which is a na
measure for the purposes of analyzing outcomes of d
quench experiments. However, one could arbitrarily imp
other measures, for example, those corresponding to flip
a biased coin; specifically, where the probabilityp of an
outcome of heads on each~independent! flip haspÞ1/2. For
any such fixedp, there are also an uncountable number
one-spin-flip stable states~except whenp50 or p51), all
~outside of a set of measure zero! with the same energy—bu
the energy depends onp.

Although this is relatively straightforward for the single
spin-flip case~even in higher dimensions! it becomes more
complicated when analyzingM-spin-flip stable states with
M.1, because now the energiesEM can in principle depend
on the relation between the ratesRj for j-spin-flips ~defined
in Sec. II! asj varies between 1 andM. To see this, conside
the caseM52, and two different choices ofP2 correspond-
ing to different ratiosR2 /R1. Returning to the 1D chain
consider the final statess2,

` and s2.
` , obtained when the

rates are chosen so thatR2 /R1!1 andR2 /R1@1, respec-
tively. In the former case, the dynamics allows the system
find ~approximately! a one-spin-flip stable state state first,
which the probability that any given weak bond is satisfied
close to 1/2; the energy associated with the weak bond
then lowered further by rigidly flipping neighboring pairs
spins. In the second case pairs of spins are flipping rap
compared to single spins; there is no reason to expect
energies ofs2,

` ands2.
` to be the same. Indeed they can

shown to be generally different in one dimension~in the
limits R2 /R1→0 and`) by a more detailed~but lengthy!
analysis.

In general, one might consider for arbitraryM a natural
dynamics where, for eachk,M , the system first converge
to a k-spin-flip stable statesk

` before rigid k11 clusters
begin to flip. Roughly speaking, this corresponds to a lim
where each of the ratiosRk11 /Rk→0. A motivation for such
a choice is that the systems of interest are at low temp
tures, and a natural scaling with temperature of the ra
Rk11 /Rk is as exp@2f(k)/T #, for some positivef (k). The
next theorem is motivated by such a dynamical choice.

For the first part of the theorem, our proof requires mo
about the common distribution of the couplingsJxy beyond
our general assumptions that the distribution is continu
with a finite mean: the possible values ofuJxyu include at
least three very different scales—i.e.,J1 ,J2 ,J3 with J1 /J2
and J2 /J3 larger than some dimension-dependent const
That will be so~in all dimensions for a given distribution! if
the possible values ofuJxyu can be arbitrarily large or arbi
trarily small ~or both!. This includes Gaussian spin glass
and disordered ferromagnets~or spin glasses! with a uniform
distribution on (0,J) @or on (2J,J)#; it does not include
disordered ferromagnets with a distribution on (J2e,J).
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Theorem 3.The energy densitiesEM(R1 , . . . ,RM) and
EM11(R1 , . . . ,RM11) satisfy EM.EM11 providing that
RM11 is sufficiently small for givenR1 , . . . ,RM ~and the
assumption mentioned above on the coupling distribution
satisfied!. Moreover,EM for any finite M is larger than the
ground state energy density, which~for any R1 ,R2 , . . . ) is
the limit of EM asM→`.

Proof. By theorem 2, for the givenR1 , . . . ,RM , almost
everysM

` will have the same energy densityEM . For a given
large t8, we can chooseRM11 small enough so that the en
ergy densityEM11(t8) is as close as we want toEM(t8); this
is becauseRM11 is so small that only a very tiny density o
rigid M11 clusters have been flipped by timet8 ~in the

PM11 dynamics! so thatsM
t8 andsM11

t8 are very close. Fur-
thermore ift8 is large enough,EM(t8) can be made as clos
as we want to the limiting valueEM . So, for any smalld, we
can choose firstt8 and thenRM11 so that ~a! uEM11(t8)
2EMu,d and~b! at most a densityd of rigid M11 clusters
have been flipped by timet8 ~in the PM11 dynamics!.

The rest of the proof is to show that as time increa
from t8 to ` in the PM11 dynamics, enough other rigidM
11 clusters will flip to lower the energy density from
EM(t8) by more thand. To do this, it suffices to show tha
for almost every pairJ,s0, there exists a densityr of local
configurations~of J,s0) for which one hasM-spin-flip sta-
bility but for which a flip of some rigidM11 cluster will
lower the energy by at leaste. Then the desired result fol
lows by pickingd small enough~depending onr ande).

Here is one way to find such local configurations. Fir
supposeJ is such that there is a linear chain of 2M11
couplings all of whose magnitudes, except for the coupl
at the very center of the chain, are very close to so
‘‘large’’ value J1. Suppose further that the center couplin
magnitude is close to an ‘‘intermediate’’ valueJ2 and all
other coupling magnitudes within distance~approximately!
M of the linear chain have magnitudes close to a ‘‘sma
valueJ3. What is crucial is not the absolute sizes of theJi ’s
but thatJ1@J2@J3. Next supposes0 is such that at time
zero the 2M ‘‘large’’ couplings are all satisfied but the ‘‘in-
termediate’’ center coupling is unsatisfied. Such a local c
figuration~which will occur with strictly positive density be
cause of our assumptions on the coupling distribution! will
have the desired stability properties withe approximately
equal toJ2. Here the rigidM11 cluster to be flipped is hal
of the linear chain on either side of the center coupling.

To prove the final statement, we lets be some ground
state ands8 be someM-spin flip stable state~with M large!.
We considerZd as the union of disjoint cubes that are tran
lates ofLL11, with L chosen so that the volume of each cu
is belowM; each cube should be thought of as an interior~a
translate ofLL) plus boundary. By the metastability, the r
striction ofs8 to any interior is a finite-volume ground sta
for its own boundary condition. Hence if we construct as9
to agree withs on all the interiors and withs8 on all the
boundaries, the energy densityE9 of s9 must be higher than
E8 of s8 ~because we no longer have ground states in
interiors for the boundary conditions!. On the other hand
clearly E92E is of orderLd21/Ld. Thus E8<E1O(L21)
and hence lim

M→`
EM<E. All ground states have the sam

energy densityE ~as can be shown by a similar argumen!
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and it readily follows that the energy density ofany spin
configuration is at leastE; thusEM>E and henceEM→E as
M→`, completing the proof.

VI. REMANENT MAGNETIZATION

Suppose that a spin glass with Hamiltonian~1! is prepared
in the uniform initial statesx511 for all xPZd, and
evolves at zero temperature through the usual one-spin
Glauber dynamics. What is the typical magnetization of
metastable state into which the system evolves? This q
tity is of interest because it is related to experimental m
surements of the thermoremanent magnetization in lab
tory spin glasses@2,3#. For the continuously disordered sp
chain in one dimension this quantity was found to be
@42,56#. Following the practice in those papers, we will sim
ply refer to it as the remanent magnetization and denot
mrem.

The question can be recast more generally as finding
value of the ‘‘remanent overlap’’ between the initial and
nal states,qrem5 lim

L→`
uLLu21(xPLL

sx
0sx

` . Because of the

translation invariance of this quantity, it will be constant f
almost everyJ, s0, andv1; thus no further averaging~be-
yond the spatial! is needed. By a simple gauge transform
tion argument~see the end of the proof of the next theorem!,
for a symmetric spin glass~i.e., where the couplings are sym
metrically distributed about zero!, qrem5mrem. Put another
way, the question as to the value of the remanent overla
how much direct memory of the initial state does the fin
state retain? This version of the question is as relevant
random ferromagnets as for spin glasses, and so we
hereafter address the problem in both its forms: i.e., as
remanent overlap of a continuously disordered system
namically evolving at zero temperature from a random ini
state, and also as the remanent magnetization of a symm
spin glass evolving from a uniform initial state.

The result of theorem 2 applies also, as already noted
the magnetization per spin, which is zero for almost ev
M-spin-flip stable state. However, when the initial states0 is
chosen in a special way~i.e., all plus!, we expect to ‘‘land’’
in a one-spin-flip stable state with positive magnetization~cf.
the discussion following theorem 2!. The next theorem pro
vides a general result for highly disordered models~Sec. III!
in any dimension. We will see that the resultmrem51/3 in
the ordinary 1D spin glass immediately follows as a spe
case.

Theorem 4.Consider the highly disordered model ind
dimensions described in Sec. III B 2, undergoing single-sp
flip dynamics at zero temperature from a random initial st
s0. For almost every coupling realizations0 and v1, the
resultings1

` will have a remanent overlap withs0 equal to
d/(4d21). Similarly ~and consequently!, for a highly disor-
dered symmetric spin glass, if the inital state is uniform w
sx511 for all xPZd, then the resultings1

` will have a
remanent magnetization equal tod/(4d21).

Proof. From the definition of the highly disordered mod
on Zd, it follows that any couplingJx0 ,y0

that is larger in

magnitude than any of its 2(2d21) neighboring couplings
will automatically satisfy the following condition:
ip
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uJx0 ,y0
u.maxH (

z: zux02zuz51
zÞy0

uJx0 ,zu, (
z8: zuy02z8uz51

z8Þx0

uJy0 ,z8uJ .

~7!

Therefore, if such a bond is satisfied ins0, it remains satis-
fied for all time. We will refer to these as ‘‘strong’’ bonds
We will see that these bonds determine the remanent m
netization, so we first need to compute their density in alm
every coupling realization.

The probability of any given bond having this ‘‘strong
ness’’ property is identical to that of an arbitrary eleme
~call it X1) in a set of 4d21 independent random variable
(X1 ,X2 , . . . ,X4d21), chosen from a common continuou
distribution, having the highest value in the set.~The Xi ’s
here represent the magnitudes of a given coupling and
4d22 neighboring couplings.! Since eachXi is equally
likely to be the highest value, it follows that the probabili
of an arbitrary coupling being strong is 1/(4d21). Then, if
ns is the density of spins that are located on either end
strong bonds,

ns5@1/~4d21!#323d52d/~4d21!, ~8!

where the factor of 2 arises because each strong bond
nects to two spins, and the factor ofd is the ratio on the
lattice Zd of the number of bonds to the number of spins.

To find the remanent overlap, we first note that, due to
randomness ofs0, exactly one half of the strong bonds a
satisfied at time zero and will contribute toqrem, and the
other ~unsatisfied! half will not contribute ~because ins`

every such bondwill be satisfied!. What about spins con
nected to other bonds? It was shown in Ref.@60# that the
influence clusters of the strong bonds in the highly dis
dered model have a treelike structure, i.e., contain no lo
~this structure on a larger scale, arising for similar though
identical reasons, also defines the static ground state pro
ties of these models; see@61,63#!. Because of the treelike
influence structure, thesx

`’s for these otherx’s are com-
pletely independent of the correspondingsx

0’s and it follows
that they also contribute zero to the remanent overlap. Th
fore,

qrem5 1
2 @2d/~4d21!#105d/~4d21!. ~9!

The last claim of the theorem follows now by a standa
gauge transformation argument, which converts a randoms0

into a uniform all plus state, at the expense of doing a c
responding transformation to the couplings. But for a sy
metric spin glass, the resulting coupling configurations
identically distributed with the original ones, which com
pletes the proof.

Remark. In one dimension, Eq.~9! reduces tomrem
51/3, a result found in Ref.@56# ~see also Ref.@42#!. This is
not a coincidence, because the two ingredients used in
proof of theorem 3—the property that a coupling who
magnitude is greater than those of any of its neighbors
isfies Eq.~7!, and the additional property that all influenc
clusters contain no loops—occur automatically in any
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model with a continuous coupling distribution.~In that sense,
continuously distributed 1D models are already ‘‘highly d
ordered.’’!

What about realistic models in dimensions higher th
one? We present now a heuristic derivation of a lower bo
for mrem(d), based again on the density of strong bonds. T
condition for a strong bond is given by Eq.~7!, which in-
volves two independent sums of 2d21 random variables
X1 , . . . ,X2d21 and X18 , . . . ,X2d218 , corresponding to the
absolute values of the couplings at either end of the str
bond. Using the independence of the sums on either sid
the bond, we find the following formula for Probd(Js), the
probability of any given bond being strong, wheref̃ n denotes
the probability density function forX11•••1Xn :

Probd~Js!5E
0

`

f̃ 1~x!H E
0

x

f̃ 2d21~y!dyJ 2

dx. ~10!

Following the same procedure as in Eq.~8! yields a formula
analogous to Eq.~9!:

mrem>d Probd~Js!. ~11!

However, this expression assumes that the contribution
the spins on all other bonds is positive or zero. Although t
is plausible, we do not have a rigorous argument for it, a
so the result in Eq.~11! should be considered heuristic.

The larged behavior of Eqs.~10! and~11! depends on the
nature of the common distribution of the individual co
plings. For example, if it is a uniform distribution o

@2J,J# „so that f̃ 1(x)51/J on @0,J#, and zero elsewhere…,
one finds that Probd(Js) behaves as exp„24d ln(d)6O(d)… as
d→`, while for a Gaussian distribution, the 4 in the exp
nent is replaced by 2. We spare the reader the detail
these calculations and estimates, but note that if on the o
hand, the magnitude of the couplings could neither take
very small nor very large values~e.g., if theJxy’s were uni-
formly distributed on @2J,2e#ø@e,J#), then Probd(Js)
would be identically zero above some dimension.

Nature versus nurture

A problem related to remanence is to ask for the exten
which the final state is determined by the initial spin config
ration. This should be distinguished from asking for the fra
tion of spins that have thesamefinal value as their initial
value; rather, we are asking here what percentage ofs` is
determined bys0, where the remainder will depend on th
dynamics realization.

In order to quantify this, we introduce a quantity prev
ously considered in Ref.@55#. This quantity, denotedqD , is
a kind of dynamical order parameter somewhat analogou
the Edwards-Anderson order parameterqEA . Let ^•& denote
the average with respect to the distributionP1 over dynami-
cal realizationsv1, for fixed J ands0. Here we will use an
overbar to denote the remaining averages overJ ands0, i.e.,
with respect to the joint distributionPJ,s05PJ3Ps0. We
then defineqD5 lim

t→`
qt ~providing the limit exists, which

it does in the ordinary spin glass and random ferromagn!,
where
n
d
e

g
of

of
s
d

of
er
n

o
-
-

to

t

qt5 lim
L→`

~1/uLLu! (
xPLL

^sx
t &25^sx

t &2. ~12!

~The equivalence of the two formulas forqt follows from
translation-ergodicity.! When s` exists, thenqD is also
given by the same expressions as in Eq.~12!, but with sx

t

replaced bysx
` . As already noted, the order parameterqD

measures the extent to whichs` is determined bys0 rather
than byv1 ~for fixed J ). This is because the middle expre
sion of Eq. ~12! is the overlap betweens t and s8t corre-
sponding to independent replicasv1 andv18 but the sames0

~see also theorem 6 below!. Of course,q051, becauses0 is
completely determined bys0, while a valueqD50 would
mean that for everyx, s0 yields no information aboutsx

` .
We now present an exact result in one dimension ear
proved in Ref.@55#.

Theorem (Nanda-Newman-Stein)@55#. In the one-
dimensional disordered model with continuous coupling d
tribution, qD51/2.

Because the technical proof appeared in Ref.@55#, here
we present only an informal version. The idea is that,
discussed earlier, the one-dimensional chain breaks up
disjoint dynamical ‘‘influence clusters,’’ bounded on eith
end by ‘‘weak’’ couplings satisfying Eq.~6!. Each of these
clusters is governed dynamically by a single ‘‘strong’’ bon
by which we mean that once the spin configuration is su
that the strong coupling is satisfied, the state of the spin
s` within the rest of its influence cluster is completely d
termined~by the signs of the couplings!. Put more pictur-
esquely, there is a ‘‘cascade of influence’’ emanating fro
the strong bond and trickling down to either side of its infl
ence cluster, until all couplings within are satisfied. Th
means that a spin value att5` is already determined by (J
and! s0 if the strong bond in its influence cluster is satisfi
at t50, and is completely determined byv1 otherwise. Be-
cause this satisfaction probability is 1/2, the result follows
is not difficult to extend this result to the highly disordere
model in any dimension@55# where, because all influenc
clusters have a treelike structure, the idea behind the pro
essentially the same.

For the ordinary spin glass or random ferromagnet,
cannot computeqD precisely, but it is easy to show that stri
inequalities hold at either end; that is, 0,qD,1, so the final
state is not completely determined either by the initial st
(qD51) or by the dynamics (qD50). We refer the reader to
Ref. @55# ~see the proof of theorem 4 of that paper! for the
argument.

VII. BASINS OF ATTRACTION

The basin of attraction of a metastable stateaM may be
defined as the set of starting configurationss0 such that
sM

` (s0,vM)5aM for almost everyvM . ~This generalizes to
M-spin-flip dynamics the definition given in Ref.@42#. A
similar definition for the basin of attraction of apurestate at
positive temperature was given in Ref.@51#; see also related
discussions in Ref.@71#.! Properties of basins of attraction o
metastable states have played important roles in studies
only of disordered system dynamics, but also those of ne
nets, combinatorial optimization, and related types of pr
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lems where many locally optimal solutions exist. Here
ask the following question: how large@in the sense of the
infinite-temperature~uniform! distribution on spin configura
tions# is the union of all the domains of attraction of all th
metastable states?

Theorem 5.Under the same assumptions on the coupl
distribution as in theorem 3, almost every initial configur
tion s0 is on a boundary between~two or more! metastable
states. Thus the union of the domains of attraction ofall of
the metastable states forms a set of measure zero~in the
space of alls0’s!.

Proof. For M51 ~and without the extra assumptions
theorem 3!, the result follows from the fact, stated in Sec. V
and proved in Ref.@55#, that qD,1 strictly for disordered
models with continuous coupling distributions in any dime
sion. That is, for almost everyJ ands0, the final statesM

`

must depend on the dynamical realizationvM ; the outcome
is not determined purely bys0.

To show for M.1 that the outcome is not determine
purely bys0, we consider the same type of linear chains
2(M21)11 couplings as in the proof of theorem 3—aga
with all couplings other than the center one satisfied at t
zero. Then the final state of the spins along that chain
determined byvM , i.e., by which of the two halves of th
chain flips first so that the chain becomesM-spin-flip stable.

Remark.Similar results for pure states were proven
Ref. @51#—i.e., that, if many pure states exist in the ordina
spin glass in some dimensiond and temperatureT, then the
union of their basins of attraction form a set of measure z
in the space of all spin configurations~uniformly distributed
in the usual sense!. That a similar result holds for metastab
states is not necessarily surprising, but we believe that m
is true, i.e., that almost no metastable state lives in the b
of attraction of a single pure or ground state. This~which we
shall pursue elsewhere! would seem to contradict a standa
view in the literature.

VIII. DYNAMICAL EVOLUTION FROM A SINGLE
INITIAL STATE

We now revisit the questions discussed in Sec. IV from
different standpoint. In that section we discussed the na
and distribution of overlaps for pairs of metastable sta
~independently! chosen from theentire set $sM

` % of M-spin-
flip stable states, generated through our dynamical pro
dures. Here we consider arestrictedsubset of the one-spin
flip stable states, which, although still uncountably infinite
a set of zero measure of the one-spin-flip stable states$s1

`%.
This is the set of states dynamically generated from asingle
s0 ~chosen from the usual infinite temperature distributio!.
Information on states chosen from this restricted set may
relevant to studies of damage spreading@72–74#, which in
some formulations examines overlaps of pairs of states
namically generated from the same initial state.

Theorem 6.For fixed J, consider two metastable state
s1

`(s0,v1) and s1
`(s0,v18). To simplify the notation we

will in this section refer to these states ass` and s8`, re-
spectively. In all casesv1 andv18 are chosen independently
Then for almost every such pair, the spin overlap equ
qD.0, whereqD is the dynamical order parameter defin
as thet→` limit of qt in Eq. ~12!.
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Proof. Throughout this proof we suppress the depende
of the two final states ons0, because both metastable stat
are understood to evolve from the same initial state; we a
suppress theM51 subscript ons`. Then the overlap of the
two final states is

lim
L→`

uLLu21 (
xPLL

sx
`~v1!sx

`~v18!

5EJ,s0,v1 ,v
18
@sx

`~v1!sx
`~v18!#, ~13!

whereEJ denotes an average with respect to the distribut
over the couplings, and similarly for the other distribution
Equation~13! follows from the translation-ergodicity of the
distributions from which the couplings, initial state, and d
namical realizations are chosen, along with the translati
invariance of the overlap. Because the dynamical realizati
v1 andv18 are chosen independently, it follows that

EJ,s0,v1 ,v
18
@sx

`~v1!sx
`~v18!#5EJ,s0@Ev1

„sx
`~v1!…#25qD .

~14!

IX. FINITE VOLUMES

Most of the preceding discussion concerns infini
volume disordered systems. Because experiments and
merical simulations are done on finite systems~and in the
latter case often not very large ones!, it is important to study
how the theory of metastable states constructed so fa
modified when attention is restricted to finite volumes. It h
often been the case for conventional homogeneous sys
that both thermodynamic and dynamical behaviors in infin
systems are a straightforward extrapolation from behavio
large finite volumes; however, recent work has shown t
for disordered systems such simple extrapolations can o
fail, and in general the relationship between the physics
finite and infinite systems can be subtle@67,75,76#.

We therefore re-examine many of the questions pre
ously raised and answered for infinite systems in the con
of a finite system on a cubeLL of volumeV5Ld spins. The
first question we will address is how the number of me
stable states scales with volume. We showed in theore
that for infinite systems the number ofM-spin-flip metastable
states is uncountably infinite in any dimension; it is natu
then to expect that this number scales exponentially w
volume~in a d-dependent fashion! for finite systems, and we
will now prove that this this is true in general. In some mo
els, like the ordinary 1D disordered chain, or the highly d
ordered model in general dimensions, the scaling behavio
the number of one-spin-flip stable states can be calcula
exactly.

Theorem 7.Let NM ,d(V) denote the number ofM-spin-
flip stable states in the cubeLL of volume V5Ld in d di-
mensions. Under the same assumptions on the coupling
tribution as in theorem 3: for the ordinary spin glass a
random ferromagnetNM ,d(V)5exp@O(V)#, in the sense tha
NM ,d(V) is bounded above by exp@aM

1(d)V# and below by
exp@aM

2(d)V#, where the coefficientsaM
2(d).0 and aM

1(d)
,` depend on the model chosen. In both the highly dis
dered spin glass and highly disordered random ferromag
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for M51, V21 ln@N1,d(V)# converges to a1(d)
5(d ln 2)/(4d21) asV→`.

Remark.As already mentioned, results for the highly di
ordered model also apply to the ordinary 1D disorde
chain, where the coefficient becomesa1(1)5(ln 2)/3, in
agreement with earlier calculations@40,42#.

Proof. We will prove the second claim first. Computatio
of the exact number of one-spin-flip stable states in
highly disordered model consists of two parts: computing
density of strong bonds@satisfying Eq.~7!#, and showing that
the number of one-spin-flip stable states corresponds to
number of ways to satisfy all the strong bonds.

The density of strong bonds in the highly disorder
model was already computed in the proof of theorem 4
the discussion preceding Eq.~8!. From that discussion, th
average number of strong bondsnb(d,V) in volumeV satis-
fies

V21nb~d,V!→@d/~4d21!#. ~15!

Each strong bond~which must be satisfied in allM-spin-flip
stable states, for anyM ) can be satisfied in two ways, co
responding to a simultaneous flip of the two spins at eit
end of the bond. To complete this part of the argument,
need to show that the number of one-spin-flip stable st
equals 2nb(d,V).

To do this, we note that the one-spin-flip dynamics bre
Zd up into disjoint influence clusters, as shown in Re
@55,60#. These have a treelike structure, so that under o
spin-flip dynamics each has two possible spin configuratio
related by a global spin flip; the spin configuration of ea
influence cluster is determined entirely by that on the stro
bond.

To prove the first claim of theorem 7, we will establis
lower and upper bounds forNM ,d(V) in the ordinary spin
glass or disordered ferromagnet. A trivial upper bound
obtained by noting that the number of metastable states
not exceed the total number of spin configurations, so
for any M , aM

1(d)< ln 2. To establish anM-dependent
lower bound, we consider first the caseM51. The density
of strong bonds@obeying Eq.~7!# was computed in Eq.~10!,
but it is sufficient for our purposes here to note simply th
under the assumptions of theorem 3 on the coupling dis
bution, this density is positive is any dimension.

Even though influence percolation may occur in the
models, the strong bonds are still satisfied or unsatisfied
dependently of one another~and once satisfied, remain so fo
all time!, as in the highly disordered case. Thus there
~approximately! 2d[Prob(Js)]V ways for the strong bonds to b
satisfied, and at least an equal number of one-spin-flip st
states.

The proof is completed by noting that forM.1, we may
consider the same type of linear chains of 2(M21)11 cou-
plings as in the proof of theorem 3. Here the center coupli
of the chains play the role of the strong bonds and the d
sity of center couplings replaces Prob(Js) in obtaining a
lower bound foraM

2(d). This completes the proof.
We now turn to the important question of whether t

results obtained so far for infinite systems—in particular,
answers~4!–~6! discussed in Sec. I B 2—hold~to an increas-
ingly good approximation as system size increases! in large
d
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finite volumes. The answer to~2!, showing convergence o
the dynamics~within a volumeLL and with specified bound
ary conditions! to a limiting s (L)

` , was already provided in
Sec. III A.

Why is it important to study this? The reason is that it
not necessarily the casea priori that the answers to~4!–~6!
would hold, even roughly and in a qualitative sense, for la
finite volumes in the limit asL→`. It could conceivably be
the case, for example, that the overlaps between final st
evolved from two arbitrarily chosen initial states, and wi
independent dynamics, mightnot be concentrated about zer
in finite volumes of arbitrarily large size~even though the
overlap would be exactly zero for the infinite volume syste
according to theorem 1 of Sec. IV!; instead, it might be, if
one looked at many pairs of initial states and dynamical
alizations, that one would find a distribution of final sta
overlaps spread over many values, which wouldnot increas-
ingly concentrate about zero asL→`. This would be a type
of dynamical analogue to the ‘‘nonstandard SK picture,’’
a similar thermodynamic scenario, raised as a logical po
bility in Refs. @67,75# ~but ruled out as a viable option
through a combination of rigorous and heuristic argument
Ref. @76#!.

We will now show that such scenarios should not in fa
occur; that is, the answers to~4!–~6! will hold to a good
approximation in large finite volumes, and with increasi
accuracy as their size increases. So, to use the example i
preceding paragraph, we would find that the distribution
overlaps between final states evolved from pairs of arbitra
chosen initial states, and with independent dynamics, wo
be clustered about zero in an increasingly tight distribut
asL→`. We will prove this rigorously for both highly and
strongly disordered models~the latter of which has similar
thermodynamic behavior to an ordinary spin glass or rand
ferromagnet!, and will provide convincing heuristic evidenc
that the same remains true for ordinary disordered mod
Our strategy will be to show that the final states (L)

` agrees
with the infinite volumes` ~in a way to be made precis
momentarily! increasingly well asL→`. ~As always, our
results are for almost every state; in the finite-volume c
text, this means the exclusion of an increasingly small pr
ability event, typically exponentially small, in the volume.!

We now make these ideas more precise. Consider a
ume LL with specified boundary conditions, such as fre
fixed, or periodic. As always we takeLL to be a
d-dimensional cube of sideL centered at the origin. Conside
within that cube a smaller one, denotedLL8 , also centered a
the origin, and withL8!L. The boundary conditions onLL8
may be the same as those onLL or different. Consider now
the two statess (L)

t ands (L8)
t , generated from a pair of initia

states and a pair of dynamical realizations that, in each c
are identical within the smaller volumeLL8 . We define the
‘‘region of agreement’’~at timet! betweens (L)

t ands (L8)
t as

the set of sitesx within LL8 wheres (L)x
t 5s (L8)x

t .
We want to ask whether~for most initial states and dy

namical realizations! the fraction of sites inLL8 belonging to
the region of agreement at timet5` is close to 1. More
precisely, we want to know whether if we take first the lim
L→` and thent→`, the agreement fraction approaches o
asL8→`. If so, then we would be finished.
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Let us examine this in more detail. Consider, for examp
periodic boundary conditions on bothLL andLL8 . Because
a limiting final state exists in each volume, the probabil
that the spinsx at any particular sitex has not reached its
final state, i.e., will flip again, after a timetx , must go to
zero astx increases for fixedL8 and L. If this probability
goes to zero independently ofL8 andL as both become larg
@i.e., if the probabilitygL8(tx) in LL8 is bounded by an
L8-independent functiong(tx) that goes to zero#, then we
are done. Put another way, eventually~as system sizes in
crease! the effects of the receding boundaries~even ast
→`) are felt increasingly less.

To see why this proves the result, we can use this pr
ability to choose a timet where, say, 95% of the sites inLL8
have reached their final configuration, and this time is in
pendent ofL8. Now compare this to the restriction toLL8 of
the corresponding infinite volumes`. After the timet, the
only spins withinLL8 that ‘‘notice’’ that they are subject to
periodic boundary conditions would be those within so
distance of order 1~asL8→`) of the boundary. The other
reach the same state as in the infinite system, and so
overlaps agree in that region.

This argument clearly will hold whenM51 in any model
where influence percolation does not occur, such as highl
strongly disordered models. In those systems, all the dyn
ics is localized, as discussed in Sec. III B 2. Therefore,
L→`, there will be someL beyond which every spin inL8
will reach the same state as in the infinite system; that
every influence cluster will be unable to distinguish~dynami-
cally! whether it belongs to a finite or infinite system. A
though the argument was presented in an informal way,
is sufficient to prove the result, stated formally as theorem

Theorem 8.For single-spin-flip dynamics in any mode
where influence percolation does not occur, such as ordin
1D disordered chains, or both the highly and strongly dis
dered models, the distributions of overlaps, energies@77#,
and other global properties of metastable states in large fi
volumes approaches the infinite-volume results as the
umes tend to infinity.

While this argument is rigorous whenM51 for models
without influence percolation, it does not carry over easily
M.1 ~except in one dimension, where a modified influen
percolation argument can be carried out! or to ordinary dis-
ordered models in dimensions greater than one. Heur
cally, though, the same result should apply there too. In or
for it not to do so, it would have to be the case that the fi
energy density in finite volumes, for some specified bou
ary conditions, would belower ~by an amountnot tending to
zero with volume! than that in the infinite system. But th
absence of boundary conditions in the infinite system me
that, in any finite subvolume, the spin configuration can
namically adjust to the fixed coupling realization at t
boundaries in order to attain the lowest possible energy;
difficult to see why the energy should be lower when t
option is not available due to the boundary condition be
rigidly imposed externally, and without regard to the co
plings.

But even if this were so, it would still be irrelevant to th
state observed on any numerically or experimentally acc
sible time scale. This is because, in the infinite-volume ca
the system relaxes to a final state within a finite subvolu
,
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in some finite time. This same time would set the scale for
initial relaxation of a large finite-volume system. There mu
then be an additional time scale, depending onL, for infor-
mation generated at the boundary to propagate to spins
in the interior, changing their state. This new time scale m
diverge asL→` because of the finite signal propagatio
time imposed by the dynamics~Sec. II!; that is, for large
enough volumes the region of agreement of the final sta
generated by finite-volume and infinite-volume dynam
would be most ofLL , up to time scales diverging withL.

The scenario described in the last paragraph is unlik
however, because it is already unlikely that finite-volum
energy densities are lower than those for infinite-volume s
tems. It is noted only to show that, for any practical scena
of experimental interest, the results of theorem 8 should h
also for M.1 and for ordinary disordered systems in a
finite dimension.

X. GROUND STATES

All of our preceding discussion has concerned metasta
states, stable up toM-spin flips. These are generated by
dynamics with distributionPM , in which lattice animals up
to size M are rigidly flipped as described in Sec. II. It
natural to ask what happens if we letM→`; in particular,
can a dynamics that allows rigid flips of lattice animals
unbounded size be constructed so as to generate infi
volume ground states? We will address that question in
section and see that the answer~when formulated carefully!
is yes. However, unlike the case for finiteM, we cannot show
convergence to a final state~and indeed, convergence ma
not be valid, as we discuss below!, and so cannot obtain
results of the kind generated for metastable states. We
also discuss several issues related to the connection bet
ground states andM-spin-flip stable states, in both finite an
infinite volumes.

We therefore consider the ‘‘lattice animal dynamics’’ in
troduced in Sec. II, now with the lattice animal size u
bounded. The ratesRk were already chosen so that the d
namics, as specified by clock rates~or equivalently, mean
waiting times for a given lattice animal to attempt to flip!,
ensures that information does not propagate infinitely far i
finite time and so there is a well-defined dynamics~see Sec.
II !. The assumptions on theRk’s imply the following lemma,
which will be needed to prove the next theorem.

Lemma.Consider a volumeLL and a given lattice anima
A that is entirely insideLL ~i.e., no spins inA touch the
boundary]LL). Then at an arbitrarily chosen timet, the
probabilityp1 that the clock ofA ‘‘rings’’ ~i.e., it attempts to
flip! before timet11 and before the clock ofany other lat-
tice animal touchingLL or ]LL , is strictly positive~inde-
pendently oft or the spin configuration at timet!.

Proof. This follows immediately from the nature of th
dynamics~whose distribution is denoted hereafter byP`)
because of our assumptions on the ratesRk needed to make
the process well defined. In particular, if we denote the nu
ber of sites in a lattice animalA by uAu and denote byR(L)

the ~finite! sum ofRuBu over all lattice animalsB that touch
LL or its boundary, then
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p15~RuAu /R
(L)! ~12e2R(L)

!. ~16!

We now show that the dynamics defined byP` leads to a
ground state, in the sense to be discussed below.

Theorem 9.Consider the dynamics with distributionP` ,
and a finiteLL of arbitrary size. Then after a random timetL
~depending onL, J, s0, and dynamics realizationv`), the
spin configuration insideLL forever remains in a ground
state subject to its boundary conditions~where the ground
state and the boundary condition could themselves cha
with time!.

Proof. We note first that, as always,~with probability 1!,
any fixed lattice animal can undergo only finitely ma
energy-lowering flips. This then implies that the followin
event must have zero probability: there exists an infinite
quence of timest1 ,t2 , . . .→` such that at each of thos
times, the spin configuration inside the cube~given its
boundary conditions at that time! is not in a ground state
configuration. This is because, after any of those times,
above lemma implies that there is a positive probability
the next unit of time that some lattice animal strictlyinside
the cube flips to lower the energy. The finiteness ofL implies
a finite number of lattice animals insideLL , so that if this
event did not have zero probability, then, with positive pro
ability, some lattice animal inside the volume would flip i
finitely many times.

We emphasize a few points, most importantly, that th
is no claim that the dynamics converges to a specific gro
states` ~though it might, depending on dimension and d
order distribution!. The proof of convergence for finiteM
~Ref. @55# and Sec. III B above! fails here because now th
energy per spin of a lattice animal flip of sizeM can go to
zero asM→`. Of course, if convergence to a ground sta
s` can be shown for a particular model, this would imm
diately imply~cf. theorem 1! that there would be an uncoun
able number ofgroundstates, and their overlap distributio
function would be ad function at the origin~see also discus
sions in Refs.@67,76#!. It is therefore of interest to pursu
this question, but we will not do so here.

A second point is that our dynamics ‘‘algorithm’’ find
ground states in the sense that any finite region surroun
the origin will eventually always be in some ground state~no
energy-lowering flips possible within the region! after some
time ~depending on the various realizations as discusse
theorem 9!. It could still happen, though, that spins with
the region flip infinitely often~as they must if there arenot
uncountably many ground states, as is expected, e.g., in
2D random ferromagnet!. These could occur either through
rigid flip of the entire region, or through changes in bounda
conditions due to flips of large lattice animals intersect
the region.

Finally, we note that this is a rare example of a dynami
process that can be proved to lead to a Gibbs state~in this
case, a ground state atT50). While it is widely expected
that finite-temperature Glauber dynamics, and similar
namics that satisfy detailed balance, lead to Gibbs state
positive temperature, ast→`, we are unaware of any gen
eral proof~for a discussion of relatedT.0 results, see Sec
IV .5 of Ref. @59#!.

It may seem surprising that there can be an uncount
number of states energetically stable to rigid flips ofM spins,
ge
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whereM can be arbitrarily large~but fixed!, and yet there
exists only a single pair of ground states. Yet this is precis
what happens in disordered 1D chains, and almost certa
as well in the 2D disordered ferromagnet.~Recent numerical
evidence also points towards only a single pair of grou
states in the 2D spin glass as well@78,79#.! Caution should
therefore be exercised whenever information on ground~or
pure! states is used to extract information on metasta
states, or vice-versa.

XI. CONCLUSIONS

We began in Sec. I B 1 with a list of ten questions abo
basic properties of metastable states in disordered syst
providing brief answers in Sec. I B 2 followed by a detaile
study in subsequent sections. These questions and ans
aimed toward understanding fundamental features of the
of M-spin-flip stable states in spin glasses and disorde
ferromagnets, such as their numbers, basins of attraction
ergies, overlaps, remanent magnetizations, and relation
thermodynamic states.

From a broader perspective, we have presented a v
point for considering metastable states in spin glasses
random ferromagnets; its essence is that one can constr
systematic approach toward their study, just as has been
ditionally done for fundamental statistical mechanical o
jects such as spin configurations or thermodynamic sta
We approach the problem of metastability as in those ca
by noting that one is often most interested~with exceptions
as discussed! in the typical states that appear in a physica
relevant ensemble for the particular problem under study
the case of spin configurations, this enemble is usually
Gibbs state at a given temperature; in the case of thermo
namic states, we proposed in previous papers@67,75,76# that
the appropriate ensemble is the metastate. In the current
text of metastable states, we propose a natural ensemble~on
the $s`(s0,vM)% ’s! that arises from zero-temperature ‘‘la
tice animal’’ dynamics evolving from a spin configuratio
generated through a deep quench; we call thisM-dependent
measure theM-stable ensemble. To summarize, we propo
the following comparison:

Object Ensemble

Spin configuration ⇒ Gibbs ensemble
Gibbs state ⇒ Metastate ensemble
Metastable configuration ⇒ M-stable ensemble

We suggest that this dynamical approach provides bo
natural ensemble and the corresponding tools for study
metastable states.
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@25# V. Čerńy, J. Optim. Theory Appl.45, 41 ~1985!.
@26# S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Science220, 671

~1983!.
@27# M.B. Weissman, Rev. Mod. Phys.65, 829 ~1993!.
@28# F. Tanaka and S.F. Edwards, J. Phys. F10, L2769 ~1980!.
@29# A.J. Bray and M.A. Moore, J. Phys. C13, L469 ~1980!. By

studying the number of solutions to the TAP equations@32#,
the authors were also able to draw some conclusions a
numbers of metastable states for 0<T<Tc .

@30# C. De Dominicis, M. Gabay, T. Garel, and H. Orland, J. Ph
~Paris! 41, 923 ~1980!. This paper also contains some resu
on numbers of metastable states nearTc .
.

-

d

.

s.

.

e
is-

ut

.

@31# D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett.35, 1792
~1975!.

@32# D.J. Thouless, P.W. Anderson, and R.G. Palmer, Philos. M
35, 593 ~1977!.

@33# K. Nemoto, J. Phys. A21, L287 ~1988!.
@34# D. Vertechi and M.A. Virasoro, J. Phys.~France! 50, 2325

~1989!.
@35# L.B. Ioffe and D. Sherrington, Phys. Rev. B57, 7666~1998!.
@36# V.M. de Oliveira and J.F. Fontanari, J. Phys. A30, 8445

~1997!.
@37# S. Franz and G. Parisi, J. Phys. I5, 1401~1995!.
@38# E.A. Lutchinskaia and E.E. Tareyeva, Europhys. Lett.17, 109

~1992!.
@39# S.A. Kauffman, The Origins of Order~Oxford University

Press, Oxford, 1993!.
@40# T. Li, Phys. Rev. B24, 6579~1981!.
@41# R. Ettalie and M.A. Moore, J. Phys.~France! Lett. 46, L-893

~1985!.
@42# B. Derrida and E. Gardner, J. Phys.~Paris! 47, 959 ~1986!.
@43# A.J. Bray and M.A. Moore, J. Phys. C14, 1313~1981!.
@44# E.S. Rodrigues and P.M.C. de Oliveira, J. Stat. Phys.74, 1265

~1994!.
@45# As in previous treatments~see, however, Refs.@29# and@30#!,

our results are confined to energetically stable states. In
namical treatments, one finds that states that are locally st
with respect to smallfreeenergy changes are often invoked.
is not clear how to define such objects, or their companio
such as free energy barriers, in a clear and unambiguous
We do not consider this to be a serious impediment for t
reasons: first, at least at low temperatures, the propertie
such states are likely to be closely related to the energetic
stable states discussed here; and second, we are able to
sider the properties ofM-spin-flip energetically stable state
for arbitrarily large~finite! M. We believe that it is reasonabl
to expect that these states will play an important dynam
role at positive temperature, presumably with largerM becom-
ing relevant for higher temperatures.

@46# W.L. McMillan, J. Phys. C17, 3179~1984!.
@47# D.S. Fisher and D.A. Huse, Phys. Rev. Lett.56, 1601~1986!.
@48# A.J. Bray and M.A. Moore, Phys. Rev. Lett.58, 57 ~1987!.
@49# D.S. Fisher and D.A. Huse, Phys. Rev. B38, 386 ~1988!.
@50# G.J.M. Koper and H.J. Hilhorst, J. Phys.~Paris! 49, 249

~1988!.
@51# C.M. Newman and D.L. Stein, J. Stat. Phys.94, 709 ~1999!.
@52# S.F. Edwards and P.W. Anderson, J. Phys. F5, 965 ~1975!.
@53# Almost every~whether it’s referring toJ,s0,v or some func-

tion of them like the metastable states that are the prime s
ject of this paper! means a set of probability 1, where th
probability measure~i.e., ensemble! in question should be
clear from the context. What is left out of a set of probabili
1 is insignificant in the sense that it does not contribute to a
quantitites~such as overlap distributions! defined in terms of
an average over the relevant measure. The distinction betw
almost every andeveryis significant and forgetting it can eas
ily lead to confusion and seeming contradiction. So, for e
ample, most~but not all! of the results in this paper abou
metastable states are only valid foralmost everyone and these
are precisely the ones that are relevant for deep quench dyn
ics.

@54# C.M. Newman and D.L. Stein, Phys. Rev. Lett.82, 3944
~1999!.



nd

as

a-

l-
a
ra-

le to

ex-
ble
or-
tes.
cify
iers
eri-

ling

5260 PRE 60C. M. NEWMAN AND D. L. STEIN
@55# S. Nanda, C. M. Newman, and D. L. Stein, inOn Dobrushin’s
Way (from Probability Theory to Statistical Physics), edited by
R. Minlos, S. Shlosman, and Y. Suhov~American Mathemat-
ics Society, Providence, in press!.

@56# J.F. Fernandez and R. Medina, Phys. Rev. B19, 3561~1979!.
@57# A. Gandolfi, C. M. Newman, and D. L. Stein~unpublished!.
@58# D. Stauffer and A. Aharony,Introduction to Percolation

Theory, 2nd Ed.~Taylor and Francis, London, 1992!.
@59# T. M. Liggett, Interacting Particle Systems~Springer-Verlag,

New York, 1985!.
@60# S. Nanda and C.M. Newman, Random Struct. Algorithms~to

be published!.
@61# C.M. Newman and D.L. Stein, Phys. Rev. Lett.72, 2286

~1994!.
@62# J.R. Banavar, M. Cieplak, and A. Maritan, Phys. Rev. Lett.72,

2320 ~1994!.
@63# C.M. Newman and D.L. Stein, J. Stat. Phys.82, 1113~1996!.
@64# D. Stauffer, J. Phys. A27, 5029~1994!.
@65# For recent numerical work on one such model, a 2D bo

diluted ferromagnet, see S. Jain, Phys. Rev. E59, 2493R
~1999!.

@66# The proof shows more than uncountability ofall the M-spin-
flip-stable states: the probability measure on thesM

` ’s ~inher-
ited from its dependence ons0 andvM and their probability
measures! is continuous—i.e., no single spin configuration h
strictly positive weight.

@67# C.M. Newman and D.L. Stein, Phys. Rev. E55, 5194~1997!.
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